
360◦ USER PROFILE LEARNING FROM MULTIPLE
SOCIAL NETWORKS FOR WELLNESS AND URBAN

MOBILITY APPLICATIONS

ALEKSANDR FARSEEV
Supervised by: Professor Tat-Seng Chua

Thesis Examiners: Associate Professor Stephane Bressan, Associate Professor Chan
Mun Choon, Professor Paolo Rosso (Universitat Politècnica de València)

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

2017



Declaration

I hereby declare that this thesis is my original work and it has been written by
me in its entirety. I have duly acknowledged all the sources of information which
have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Aleksandr Farseev
August 2017

ii



Acknowledgments

This thesis would not have been possible without the support of many people.

I would first like to thank my Ph.D. advisor, Prof. Tat-Seng Chua, whose
motivation, extensive knowledge, and honest opinion helped me to shape my
research and, most importantly, me to be the person as I am now. During these
years he patiently monitored and directed my work allowing for the expression
and development of the good qualities I may possess, but most importantly, he
mentored me to become a researcher and taught me to navigate in the landscape
of academia in a manner that I now love and appreciate. Thank you!

Subsequently, I would like to express my gratitude to my colleagues in the Lab for
Media Search (LMS) group for their friendships, for the times we had together,
for the weekly meetings we had to discuss our research problems, and for all
the fun we had during my Ph.D. study. Specifically, I thank Dr. Liqiang Nie
who has walked with me the first steps of my academic existence and showed me
the tricks. Mr. Ivan Samborskii who helped me to push the bBridge platform
to production. Mr. Zaw Lin Kyaw who introduced me to the dark world of
Deep Learning and Mr. Francesco Gelli for our chats about everything. I would
especially like to thank Dr. Mohammad Akbari for all the fruitful discussions we
had during our Ph.D. studies.

I was also lucky to have received great support from people outside the lab
in NUS. Specifically, I would like to express my gratitude to Prof. Andrey
Filchenkov (ITMO University), whose research group extensively collaborated
with me during my Ph.D. study.

I would also like to express my deepest appreciation to my Thesis Advisory
Committee: Prof. Stephane Bressan, and Prof. Chan Mun Choon, for their
support and guidance during my Ph.D. journey.

Last, but not least, thanks to a beautiful flower I discovered when I was wondering
around the urban jungle of Singapore sometime in the beginning of my Ph.D. —
my wife Yu-Yi Chu. She supported me through my research journey and did not
let me down regardless all the difficulties that I’ve faced.

iii



List of Publications

Farseev, A., Nie, L., Akbari, M., & Chua, T. S. (2015 June). Harvesting multiple sources
for user profile learning: a big data study. In Proceedings of the 5th ACM Conference
on Multimedia Retrieval (pp. 235-242). ACM.

Farseev, A., Kotkov, D., Semenov, A., Veijalainen, J., & Chua, T. S. (2015 June). Cross-
social network collaborative recommendation. In Proceedings of the 7th ACM Con-
ference on Web Science (p. 38-39). ACM.

Farseev, A., Akbari, M., Samborskii, I., & Chua, T. S. (2016). 360◦ user profiling: past,
future, and applications. by Aleksandr Farseev, Mohammad Akbari, Ivan Samborskii and
Tat-Seng Chua with Martin Vesely as coordinator. ACM SIGWEB Newsletter, (Summer), 4.

Farseev, A., Samborskii, I., & Chua, T. S. (2016 October). bBridge: A Big Data
Platform for Social Multimedia Analytics. In Proceedings of the 25th ACM Conference
on Multimedia (pp. 759-761). ACM.

Farseev, A., & Chua, T. S. (2017 February). TweetFit: Fusing Multiple Social Media
and Sensor Data for Wellness Profile Learning. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (pp. 87-93). AAAI.

Farseev, A., & Chua, T. S. (2017). Tweet can be Fit: Integrating Data from Wear-
able Sensors and Multiple Social Networks for Wellness Profile Learning. ACM
Transactions on Information Systems (TOIS).

Farseev, A., Samborskii, I., Filchenkov, A., & Chua, T. S. (2017 August). Cross-Domain
Recommendation via Clustering on Multi-Layer Graphs. In Proceedings of the
40th International ACM SIGIR Conference on Research and Development in Information
Retrieval.

Chowdhury, A.-K., Farseev, A., Chakraborty, P.-R., & Tjondronegoro, D. (2017 Decem-
ber). Automatic Classification of Physical Exercises fromWearable Sensors using
Small Dataset from Non-Laboratory Settings In Proceedings of the First IEEE Life
Science Conference. IEEE.

Buraya, K., Farseev, A., Filchenkov, A., & Chua, T. S. (2017 February). Towards User
Personality Profiling from Multiple Social Networks. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence. AAAI.

Nie, L., Zhang, L., Wang, M., Hong, R., Farseev, A., & Chua, T. S. (2017). Learning user
attributes via mobile social multimedia analytics. ACM Transactions on Intelligent
Systems and Technology (TIST), 8(3), 36.

iv



Contents

List of Figures ix
List of Tables xi

1 Introduction 1
1.1 Research Problems 3

1.1.1 Solutions Overview 4
1.2 Research Contributions 5
1.3 Thesis Organization 6

2 Literature Review 8
2.1 Individual User Profiling and Wellness 8

2.1.1 Individual User Profiling from Conventional Data Sources 8
2.1.2 Individual User Profiling Based on Social Media Data 8
2.1.3 Individual User Profiling from Multiple Sources 11
2.1.4 Individual User Profiling and Physical Wellness 12

2.2 Group User Profiling and Urban Mobility 14
2.2.1 User Relationship Graph Construction 14
2.2.2 Community Detection from Single Data Source 14
2.2.3 Community Detection from Multiple Data Sources 16
2.2.4 Urban Mobility Applications 16

2.3 Summary 19

3 Data Gathering And Framework Overview 20
3.1 Data Gathering 20

3.1.1 Multi-Source Data 20
3.1.2 Cross-Network User Identification and Data Collection 23

3.2 Multi-Source Datasets 24
3.2.1 NUS-MSS dataset 25
3.2.2 NUS-SENSE dataset 26

3.3 Overview of User Profiling Framework 27
3.4 Summary 29

4 Integrating Sensors And Multiple Social Media Data For Individual
Wellness Profile Learning 30
4.1 Multi-Source Ensemble Learning for Demographic Profiling 30

4.1.1 Data Representation 31

v



Contents

4.1.2 Demographic Profiling 33
4.1.3 Evaluation 36

4.2 Multi-Source Multi-Task Learning for Physical Wellness Profiling 41
4.2.1 Data Representation 43
4.2.2 Physical Wellness Attributes Inference 47
4.2.3 Evaluation 53

4.3 Summary 60

5 Integrating Multi-Source Cross-Region Data For Group User Profile
Learning In Urban Mobility Domain 62
5.1 Multi-Source Community Detection for Cross-Network Recommendation 62

5.1.1 Data Representation 64
5.1.2 User Community Detection 65
5.1.3 Computational Time Complexity Analysis 73
5.1.4 Evaluation 73

5.2 Real-World Application: bBridge Analytics Platform 81
5.2.1 Platform Description 82

5.3 Summary 85

6 User Profiling Analytics 87
6.1 Introduction 87
6.2 Analysis Approach 89

6.2.1 Correlation Analysis: Pearson correlation 89
6.2.2 Correlation Significance Testing: P-Value Test 90

6.3 Correlation Analysis Towards Individual User Profiling 91
6.3.1 Data from Wearable Sensors 95
6.3.2 Data From Social Media 96

6.4 Correlation Analysis Towards Group User Profiling 98
6.4.1 On Inter-Source Relationship 100

6.5 Summary 106

7 Conclusions and Future Work 107
7.1 Conclusions 107
7.2 Future Work 109
7.3 Inter-Rater Agreement Measures 125

vi



Abstract

The drastic change in the Web was witnessed throughout the past decade, which
saw an exponential growth in social networking services. The reason of such
growth is that social media users concurrently produce and consume data. In
this context, millions of users, who follow different lifestyles and belong to
different demographic groups, regularly contribute multi-modal data on various
online social networks, such as Twitter, Facebook, Foursquare, Instagram, and
Endomondo. Traditionally, social media users are encouraged to complete their
profiles by explicitly providing their personal attributes such as age, gender,
interest, etc. (individual user profile). Additionally, users are likely to join
interest-based groups that are devoted to various topics (group user profile).
Such information is essential for different applications, but unfortunately, it is
often not publicly available. This gives rise of automatic user profiling, which aims
at automatic inferencing of users’ unobservable information based on observable
information such as an individual’s behavior or utterances.

This thesis focused on investigating user profiling across multiple social networks
in Wellness and Urban Mobility domains. Considering that user profiling can be
performed at individual and group levels, this thesis proposes two multi-source
learning schemes: multi-source learning scheme for individual user profiling and
multi-source community detection scheme for group user profiling. We practically
applied the proposed approaches in three user profiling scenarios: demographic
profiling, physical wellness profiling, and venue category recommendation.

To build a comprehensive individual user profile, we first trained an efficient
ensemble to predict users’ age and gender based on data from three social
networks. We then proposed the Multi-Task Multi-Source Wellness Profiling
(“M2WP ”) framework to predict users’ Body Mass Index (BMI) category and
“BMI Trend” (direction of BMI change over time) based on data from multiple
social networks and wearable sensors. We further presented a study on multi-
source group profiling and its application in Urban Mobility Domain: Cross-
Source Community-Based Collaborative Recommendation (C3R). The proposed
recommendation framework utilizes both individual and group knowledge (user
communities) to solve the task of venue category recommendation. The user
communities are detected based on our-proposed regularized spectral clustering
approach that can perform an efficient partitioning of multi-layer user relations
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graph. To show the applicability of our individual and group user profiling
solutions to real-world scenarios, we integrated all the earlier proposed techniques
in cloud-based Big Data Platform for Social Multimedia Analytics named bBridge.
Finally, we performed a comprehensive qualitative analysis of the relationship
between multiple data sources in Wellness and Urban Mobility domains.

The experimental results enable us to draw the following three key findings. First,
utilization of multiple data sources improves the performance of individual and
group user profiling as well as their applications. Second, it is important to
take inter-category relatedness into account when dealing with multiple social
networks and sensor data simultaneously. Third, in the context of group user
profiling, consideration of inter-network relationship at the clustering stage is
essential.
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Chapter 1
Introduction

Drastic change in the Web was witnessed throughout the past decade, which saw an
exponential growth in social networking services. The reason of such growth is that social
media users concurrently produce and consume data. In this context, millions of users, who
follow different lifestyle and belong to different demographic groups, regularly contribute
multi-modal data on various online social networks, such as Twitter, Facebook, Foursquare,
Instagram, and Endomondo. An example is the US region, where every third adult older
than 65 years use at least one social media service, while most of the younger ones are active
in multiple online social forums simultaneously [66].

There are several important properties that differentiate social media services from other
information resources available on the Web. First, social media users play both “data
consumer” and “data producer” roles, which result in vast amounts of user-generated content
(UGC) produced in real time. Second, data from various social networks is often given in
different content forms (modalities), such as text, images, video, location, sensor sequences,
social connections, etc. These multi-source multi-modal data describe social media users
from different perspectives, which helps to gain a more comprehensive insight into the nature
of activities and interactions between users. Third, the differences in employed data modality
are dictated by the distinct functionality and properties of each social networking service.
For example, Linkedin conveys users’ formal career path; while Twitter microblogging service
casually uncovers users’ daily activities. Lastly, it is worth mentioning that after joining a
social network, users are immediately provided with a three-dimensional online identity, which
consists of their profile (name, gender, location, etc.), content (multi-modal user-generated
data), and a network, which connects users to each other. All the above suggest social media
as a valuable and powerful information source for research and industry.

Traditionally, social media users are encouraged to complete their profiles by explicitly
providing their personal attributes such as age, gender, interest, etc. (individual user profile).
Additionally, users are likely to join interest-based groups that are devoted to various topics
(group user profile). Such information is necessary for different applications. For example,
a comprehensive individual user profile is essential in marketing, advertisement,
and wellness domains. Specifically, automatic Body Mass Index (BMI) inference is crucial
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Chapter 1. Introduction

for population obesity control; weight problems, in turn, serve as a reason for more than
12 major chronic diseases [101]. In fact, such individual attributes as Age and Gender are
essential in fine-tuning of wellness control and marketing strategies with respect to the
particular demographic group.

Group profiling is useful for brand monitoring, facility planning, and urban
mobility applications. An example of Urban Mobility application is venue category
recommendation, which suggests categories of places to visit in every particular location in a
collaborative manner. However, in practice, the majority of users are reluctant to provide
actual personal attributes. At the same time, the group participation is often relevant to
their friendship connections, rather than interests [49], which raise the problem of filtering
out irrelevant user communities.

As a solution of all the above problems, automatic user profiling based on UGC is explored
to gain relevant knowledge about an individual user and user groups. The scale of the
user-generated data and the data multi-modality entails the necessity of automatic, scalable,
multi-source user profiling techniques to be developed. These remain to be an open research
challenge.

Historically, the problem of individual user profiling in wellness domain is approached based
on data from various sources of information. Usually, an individual wellness user profile
involves personal user attributes [49] such as BMI category, demographics [54], or chronic
disease tendency [4]. Prediction of such demographic characteristics as Age, Gender, and
Personality from text corpora was studied by participants of a popular evaluation forum
PAN [132, 134, 136, 155]. In an attempt to infer application-specific demographic attributes,
Song et al. [154, 153] predicted interests of users from multiple social networks and the
tendency of users to participate in volunteer activities, respectively. Later, Buraya et al. [28]
attempted to infer relationship status of users from Instagram, Foursquare, and Twitter,
while Liu et al. [99] solved the problem of user occupation prediction by leveraging on
temporal aspect of multi-source data. To gain more insights into users’ physical condition,
Chou et al. [35] conducted a qualitative study on weight-related interactions of Twitter and
Facebook users, while Mejova et al. [105] and Silva et al. [152] attested to the predictive power
of Foursquare-based features for the group obesity inference task and cultural differences
analysis. Later, Weber et al. [174] guided machine learning models based on data from
MyFitnessPal1 to predict a success of users’ personal diet plans, while Park et al. [122]
studied publishing traits of social media users who openly share their individual health
and fitness related information. Yuan et al. [182] studied the approaches to utilize clinical
measurements to enhance the results of Alzheimer’s Disease prediction, while Akbari et al. [4]
proposed to learn the individual wellness profiles of microblog users concerning a taxonomy
of wellness events.

1myfitnesspal.com
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Chapter 1. Introduction

The task of group user profiling in Urban Mobility domain was tackled in a cross-disciplinary
manner. Gonzalez et al. [70] studied human group mobility patterns by analyzing the
one-dollar note movement across the US. Similarly, Zhao et al. [185] performed multi-
modal user community detection and profiling to solve the venue recommendation problem
from multiple social networks. Rhouma and Romdhane [139] proposed an approach for
multi-source user community detection in partially-overlapping social network graphs, while
Dong et al. [45] detected multi-source user communities on a multi-layer graph. Finally,
Noulas et al. [115, 116, 117] performed a series of studies towards venue recommendation
in urban environments based on data from location based social networks and cellular
telecommunication companies.

Notwithstanding the fact that there were some research efforts done on group and individual
user profile learning, most of these works utilize either single data source or modality, which
is not practical in real world settings [49]. The above introduces a large research gap,
which is identified by low availability of automatic techniques for individual and
group user profiling from multiple data sources in Wellness and Urban Mobility
domains.

1.1 Research Problems

In order to bridge the research gap, it is necessary to address the following three research
challenges:

1. Multi-Source Data Gathering and Inter-Source Alignment For Large Scale
Research in Wellness and Mobility Domains: To perform user profile learning
from multiple social networks, it is necessary to align different social network accounts
of the same user to each other and harvest multi-source user-generated content from
his/her social media accounts. Moreover, to conduct research in wellness domain, it is
essential to collect data that reflect users’ actual physical condition: data from wearable
sensors (i.e. Heart Rate, Oxygen Level, etc.), smart devices (i.e. Speed, Geographical
Coordinates, Altitude), and external sensor devices (i.e. Wind Speed, Temperature,
Humidity, etc.).

2. Mutually-Consistent Multi-Modal Data Representation: Besides textual data,
social media services involve data of various modalities. For example, in Instagram2,
users share recently taken pictures and videos, while in Endomondo3 users post
information about their workouts, which is strongly dependent on the temporal and
spatial aspects. Integration of such heterogeneous multimodal data sources requires

2instagram.com

3endomondo.com
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Chapter 1. Introduction

the development of efficient and mutually consistent data representation approaches.

3. Modeling Data Source Fusion in Wellness and Urban Mobility Domains:
To perform learning from multi-source data in Wellness and Urban Mobility application
domains, it is important to develop efficient data integration techniques that will fuse
multi-modal multi-source social media data and data from wearable sensors in balanced
and mutually-consistent fashion.

1.1.1 Solutions Overview

To address these problems, we present a framework for automatic user profiling from multiple
social networks. The framework involves both individual and group user profile estimation
based on data from multiple social networks and wearable sensors. We adopt the framework
for wellness and Urban Mobility domains. The framework involves three components. First,
we harvest users’ multi-modal social media contents from multiple social networks and
wearable sensors by utilizing multi-source crawling scheme, in which Twitter plays the role
of social media content “sink”. Second, data representation model extracts multi-faceted
features to describe each user from 360◦ view. Essentially, we extract psycholinguistic
representations, latent topics, mobility representations, venue semantics, image concepts,
sensor data frequency spectrum, and various statistics. Finally, we use the multi-source
learning model to conduct individual profiling and group profiling on the multi-source data.
Specifically, we model the fusion of different data sources and data from wearable sensors in
a co-regularized fashion to infer individual and group user profiles.

Data Gathering and Inter-Source Alignment

To collect users’ distributed social content from multiple social networks, it is necessary to
identify a set of users active in multiple social networks. We consider a user to be active
if he/she has recently posted tweets through the cross-linking functionality of Instagram,
Endomondo, or Swarm (Foursquare) mobile apps. We utilize Twitter REST API4 to perform
the location-dependent tweets search in Singapore, London, and New York regions to crawl
culture-specific data. To crawl sensor data and for Endomondo accounts alignment, we
utilize Twitter REST API geo-independent search. We further start a Twitter “stream”5 that
involves all active users and downloads the multi-source user-generated content of these users
via URLs to the original posts. Such a data harvesting approach offers the possibility to
map Twitter user IDs to Foursquare, Endomondo, and Instagram user IDs, which allows us
to overcome the multi-source user identification problem [169]. By following this, we perform

4dev.twitter.com/rest/public

5dev.twitter.com/streaming/overview
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data crawling from Foursquare, Endomondo, and Instagram social networks for previously
identified active Twitter users. Comparing it to the small-scale approaches (i.e. social network
aggregation sites6) and inaccurate approaches (i.e. machine learning-based cross-network
identification [169]), our-proposed crawling approach allows for balancing between a scale of
the research and the requirement to have accurate ground-truth. Noticeably, this crawling
strategy can also be applied to monitor other social networks as well.

Data Representation

Efficient data representation is a significant step in multi-source profile learning pipeline. Its
importance is dictated by its ability to bridge the semantic gap between data of different
modalities. Consistency in data representation can be achieved by describing every data
source in terms the so-called user-feature matrices, where each row is a social media user, and
each column — a feature (i.e. distinctive characteristic of the user). To obtain user-feature
matrixes from textual data, we utilize state-of-the-art natural language processing approaches,
such as Linguistic Inquiry and Word Count dictionary (LIWC [127]), latent topic learning
(LDA [21]), and some heuristic behavioral traits. To represent visual data, we use GoogleNet
image concept detection model [159], while to extract location and mobility features we
utilized Foursquare venue category names and GPS tracks. Finally, to represent Sensor data
we employed Furrier Transform (FT) [23] as well as provided workout statistics. For most of
the experiments, the data representations were normalized.

Data Source Fusion

After data harvesting and representation, the automatic user profiling is performed. Particu-
larly, we conduct both individual and group user profiling. We treat individual user profiling
in wellness domain as supervised learning task. To infer users’ demographic attributes, we
use multi-source ensemble learning [54]; while to predict user BMI, we utilize Multi-Source
Multi-Task Learning [51]. The group user profiling in Urban Mobility domain is treated
as unsupervised learning problem (community detection). It is approached by performing
regularized multi-layer spectral clustering, which serves a backbone of our-proposed venue
category collaborative recommendation approach [53].

1.2 Research Contributions

The research contributions of this thesis are as follows::

6about.me
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• We introduce a new cross-network data gathering and alignment scheme,
where one social network (i.e. Twitter) plays the role of a “sink” for data from other
social networks. The approach allows us to crawl multiple multi-modal data sources
simultaneously, while automatically align accounts of the same users in different social
networks. To facilitate further research in individual and group user profiling, we’ve
released two large-scale multi-source datasets: NUS-MSS [54] and NUS-SENSE [51].
The NUS-MSS dataset is published to promote research on demographic profiling,
group profiling, and cross-region Urban Mobility profiling; while NUS-SENSE dataset
exceedingly supports research in Wellness and “Quantified Self” domains.

• We propose a generic multi-source supervised learning framework and its
applications to demographic and wellness profiling domains. To infer users’ demographic
attributes (i.e. Age and Gender), the framework efficiently fuses multiple heterogeneous
information queues in a late-fusion manner via stochastic hill climbing with the random
restart. To infer users’ physical health attributes (i.e. BMI category and BMI trend),
the framework performs multi-task learning via collective incomplete data sources fusion,
performs feature selection on-the-fly, and incorporates the new idea of inter-category
smoothness regularization.

• We introduce a generic cross-source user community detection approach,
which incorporates inter-source relationship and serves as a backbone for urban mo-
bility recommender framework. The framework utilizes group knowledge to perform
cross-source user community-based collaborative venue category recommendation.
The community detection approach incorporates inter-source relationships during
the process of learning individual source representations and preserves inter-source
consistency at the stage of learning latent sources’ representation. The inter-source
relationship graph is computed automatically from the data and further utilized via
novel graph-constrained regularization.

• To study the relationship between different data sources and user profile attributes, we
perform the first large-scale correlation analysis of multi-source multi-modal
social media data in Wellness and Urban Mobility domains.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 provides the literature survey on the user profiling in Wellness and Urban Mobility
domains.

Chapter 3 outlines the data gathering and cross-source alignment approach [49] as well as
provides the user profiling framework overview. It then glances through NUS-MSS [54] and

6



Chapter 1. Introduction

NUS-SENSE [51] datasets.

Chapter 4 describes our proposed approaches for individual user profiling in wellness domain.
First, we formulate and evaluate the multi-source ensemble learning model for demographic
attributes inference — “SHCR” [54]. We then define a problem of multi-source multi-task
learning (MTL) based on data from multiple social networks and wearable sensors for
BMI Category and “BMI Trend” inference tasks. Specifically, we represent different data
source combinations as MTL “tasks” and introduce sparsity into data representations via `2,1
regularization [51]. To constrain the model in learning “similar” categories in a mutually-
consistent fashion, we then formulate an inter-category relationship regularization [50].
Finally, we evaluate the approach against different data source combinations and state-of-
the-art baselines.

Chapter 5 proposes our multi-source group profiling approach. First, we define the task of
cross-source recommendation in the urban environment. We then formulate the problem of
cross-source community detection as spectral clustering on a multi-layer graph and overview
the graph construction procedure. Further, we discuss the subspace regularization and inter-
source regularization mechanisms [56]. Both approaches are targeted to learn a balanced
latent clustering space. Furthermore, we practically evaluate the proposed scheme, where
group profiling serves as a backbone for Cross-Source Venue Category Recommendation
Framework [53]. The chapter is concluded by the description and architecture of the
real-world group user profiling application: bBridge Multimedia Analytics Platform [55].

Chapter 6 describes a large-scale statistical analysis of the relationship between data rep-
resentations within one data modality and between data from different data sources with
respect to individual and group user profiling [50].

Chapter 7 concludes the thesis, highlights the limitations, and points the further research
directions.

7



Chapter 2
Literature Review

In this chapter, we review related works on User Profiling in Wellness and Urban Mobility
Domains.

2.1 Individual User Profiling and Wellness

As defined by Zukerman et al. [187], individual user profiling is the process of inferring
unobservable information about a person based on observable information such as his/her
behavior or utterances. Usually, this problem is treated as a supervised learning task, where
one’s personal attributes are inferred based his/her generated data.

2.1.1 Individual User Profiling from Conventional Data Sources

Till now, there have been multiple research efforts dedicated to individual user profile learning
from conventional data sources. For example, in his early work, Fischer et. al [58] investigated
the dependencies between personal attributes and morphological features, while Booklet et
al. [22] attempted to identify children’ age based on their voice records. Later, Argamon et
al. [10] predicted Gender, Age, Native Language, Neuroticism Level of anonymous authors
from language study text corpora, while Yarowsky et al. [178] utilized gender-dependent
sociolinguistic differences to predict individuals’ biographic attributes. Finally, Estival et
al. [48] predicted five demographic and five psychometric traits by utilizing character-level,
lexical, and structural features in various generic machine learning tools. Even though the
above works were able to show promising individual user profiling results, they are often
hindered by limited data availability, which could be explained by the limitations of the data
collection procedures utilized.

2.1.2 Individual User Profiling Based on Social Media Data

With the growth of publicly-accessible online data, a large-scale individual user profiling
became possible via utilizing the data from various social multimedia data sources. One of
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the most common individual user profiling applications in Wellness domain is demographic
profiling.

Demographic Profiling

Demography as a study was known in ancient Greek, Indian, Rome and Chinese cultures [151].
In the early 20th century, it has been emerged from statistics and drastically spread among
many Social Science research communities [43]. The first attempt to infer personal user
attributes was made by Rao et. al [137], who utilized support vector machines (SVM)
classifier ensemble to infer users’ gender, age, regional origin and political views. The
ensemble was trained based on a combination of sociolinguistic and n-gram features. Later,
Otterbacher et al. [120] employed the statistical regression model to show that one’s gender
can be predicted based on stylistic, content, and metadata features in a movie reviews domain.
Hu et al. [78] used browsing patterns (web page clicks) from many web portals to predict
users’ age and gender via Bayesian modeling. At the same time, Bi et. al [20] revealed that
users’ historical search queries are useful to infer users’ age, gender, and political views,
while Koppel et al. [89] achieved the prediction accuracy of 80% for the problem of gender
detection by using simple lexical and syntactic features. Schler et al. [146] approached to
solve the age detection problem. The proposed model was trained based on 71 thousand blog
posts and performed with the accuracy of 80% and 75% for gender and age group (3 groups)
prediction, respectively. An early attempt to microblog user demography profiling was made
by Nguyen et al. [110]. The authors studied Dutch Twitter data, where the average length
of a message was less than ten terms, while age was described as a continuous variable in
logistic regression model.

The growing interest in individual user profiling gave rise to the series of the so-called author
profiling and author identification evaluations, such as PAN [132, 133, 135, 134, 135, 136]. In
PAN 2013 [132], competitors were asked to predict gender and age attributes of anonymous
authors, based on English and Spanish text corpora, while in PAN 2014 [135] the same
personal author characteristics were predicted based on the compiled corpus. The corpus
includes the data from social media, blogs, microblogs, and hotel reviews. Later on, in PAN
2015 [134] organizers included two new languages, namely Italian and Dutch, along with
a new subtask on personality recognition. In PAN 2016 [136], the effect of the cross-genre
evaluation was investigated: models were trained on Twitter data and evaluated on other data
sources. Finally, in PAN 2017 [133], organizers included Arabic and Portuguese languages
into the corpora as well as proposed the task of language variety identification together with
the gender dimension. In general, data representation techniques for demographic profiling
can be divided into two types: content-based features (bag of words, words n-grams, term
vectors, named entities, dictionary words, slang words, contractions, sentiment words) and
style-based features (frequencies, punctuations, POS, HTML tags, readability measures, first
order statistics). The best-reported results of microblog user age and gender prediction task
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(English language) were achieved by PAN 2015 winners and were reported as 85% and 83%
for gender and age group (4 groups) prediction, respectively [134].

Due to the immaturity of the observed research field, most of the reviewed works were focused
either on single-modal or single-source demography profiling. Moreover, the proposed models
are mostly built based on data from the text domain. These approaches may not be able to
utilize multi-modal user-generated content efficiently, which suggests to address the problem
from the multi-source perspective.

Individual User Profiling in Other Application Domains

Except demographic profiling, user profiling was broadly adopted in other related application
domains. For example, it has been long known that a persona’s writing, talking or social
media communication style could tell a lot about one’s character and emotional level. In
the book “The Secret Life of Pronouns” [126], James W. Pennebaker observed that different
pronouns in one’s speech/writing could represent individual Sex and Age, describe user’s
personality and co-occur with certain emotions. Moreover, some pronounce were noticed in
human speech more often when individual are not telling the truth “word I is used at far
higher rates by followers than by leaders, truth-tellers than liars” [126]. It is not surprising
that various data mining techniques were broadly adopted in computational social media and
computational linguistic research for various applications in individual user profiling domain.
One such application was proposed by Schwartz et al. [147], where authors described how
Facebook status text can be used to predict users’ personality by performing differential
language analysis. Goel et al. [68] performed a large scale prediction devoted to age, gender,
race, education, and income level based on 250, 000 users browsing history collected in one
year period. The prediction framework was built on the support vector machines ensemble.
Later on, Buraya et al. [28] attempted to infer relationship status of users from Instagram,
Foursquare, and Twitter. The similar idea was integrated into Seneviratne et al. [148],
where authors collected data from volunteers as a smartphone user and analyzed installed
applications statistics data. Later, Alam et al. [6] incorporated acoustic, linguistic, and
psycholinguistic features across diverse speech corpora to tackle the problem of learning
the personality traits from spoken data. Meanwhile, Pennacchiotti et al. [125] described a
generic framework for three-class user profiling: political affiliation, ethnicity, and the “favor”.
Except for the user-centric features, authors utilized social graph information, which boosted
the previously-achieved classification performance. Similarly to demographic profiling, most
of the approaches above are based on single-source or single-modal data, which restricts their
usage in a real-world scenario. Specifically, modern social networks describe their users in a
multi-view fashion, which needs to be considered at the learning stage. We, thus, review
related works on multi-source individual user profiling immediately next.
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2.1.3 Individual User Profiling from Multiple Sources

Multi-modal learning (also known as multi-view learning) is a paradigm in modern machine
learning research, which aims to overcome the disadvantages of the two most common data
integration strategies: early fusion and late fusion. In particular, it introduces a cost function
to model each data modality (source) jointly with other modalities (sources), which allows
for considering both inter-modality and intra-modality relationships. Below we describe
existing research towards this direction.

Christoudias et al. [37] first performed multi-modal learning while taking disagreement
between data views into consideration. Later on, Yuan et al. [182] presented an incomplete
multi-source feature learning method where blockwise-incomplete data was split into disjoint
groups (different data source combinations). Following this trend, Song et al. [153] proposed
a multi-view learning framework for Volunteerism tendency prediction for users from different
social networks. The missing data was induced by the proposed constrained Non-Negative
Matrix Factorization (NMF) approach [121]. It worth noting that the usage of data completion
techniques could introduce bias into the final data representations and, thus, may not apply
to sparse real-world datasets. Meanwhile, Yuan et al. [182] proposed to treat the problem of
multi-source fusion as a multi-task learning for enhancing Alzheimer’s Disease prediction.
Aiming to model the relationship between different inference categories, He and Lawrence [74]
proposed to regularize multi-view multi-task learning by a graph structure. The research
was conducted in the context of text classification. Given task pairs, the model projects
them to a new latent space based on the sources’ similarities. However, such an approach
does not allow for generating predictive models based on data samples that do not share
any common source. The latter is the major restriction in the real-world settings, which
does not allow for its extensive utilization. Inspired by the limitations above, Song et
al. [154] proposed a structure-constrained multi-task learning framework for user interests
inference from multi-source data. To model interest relationship, authors included external
knowledge in the form of “interest relationship weights”, which makes the framework biased
towards particular datasets and tasks. Finally, Liu et al. [99] solved the problem of user
occupation prediction by leveraging on the temporal aspect of multi-source data. The above
works demonstrated the great potential of individual user profiling from multi-source social
media data. However, as highlighted above, most of the works are limited by utilized data
completion techniques, the necessity to have an external domain knowledge or single data
modality. Moreover, they do not consider specific properties of Wellness domain, which
differs from conventional user profiling applications. All the above highlights the need for
new multi-source individual user profiling techniques in Wellness application domain. We
review several related works in next section.
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2.1.4 Individual User Profiling and Physical Wellness

Physical Activity Recognition

Due to the rise of microelectronics, the huge number of sensors and mobile devices with
unique characteristics came into the market during the past decade. The small size, low
cost and high computational power of mobile devices have redefined the way how people
interact with the devices. The trend of self-measuring was named “Quantified Self” [158]. It
has widespread rapidly among industry, ordinary people and science communities.

One of the popular directions in sensor data modeling research for Wellness is devoted
to human activity recognition [60, 17, 160, 181, 88, 86, 93, 92, 36]. The activities were
mainly detected by incorporating wearable (e.g. accelerometer and GPS), environmental
(e.g. temperature, pressure and humidity) or physiological (e.g. heart rate, skin temperature)
sensors [92]. For example, Tapia et al. [160] proposed a model that can recognize physical
activities (30 physical gymnasium activities) by modeling data obtained from five triaxial
wireless accelerometers and wireless heart rate chest monitor. To solve the same problem,
Lara et al. [93] leveraged chest sensor strap and a cellular phone. Finally, Berchtold et al. [19]
approached the same task by incorporating cellular phone data only. It worth mentioning
that the most of the recent activity recognition systems achieved similar accuracy level
(around 92%) [92]. However, due to the differences in datasets, it is hard to compare their
performance directly. Since our aim is to incorporate both multi-source social media data
and sensor data for individual Wellness profiling learning, we can only rely on sensor data
with comparably low sampling rate. In other words, we consider works on highly-customized
sensor configurations [160, 19] as less related to our research and focus on simple sensor
configurations (e.g. accelerometer, GPS, or personal wearable sensors).

The good example of a framework with simple sensor configuration is the one proposed
by Maurer et al. [104]. Four types of sensors were embedded in a smart-watch like device:
an accelerometer (dynamic activity sensor), a light sensor (external illumination sensor), a
thermometer (external temperature sensor) and a microphone (external dynamic environment
sensor). The feature set was extracted on the temporal basis. The C4.5 decision tree model
was utilized, which achieved an accuracy of 92%. The smart watch concept has become more
and more popular among major mobile electronics manufacturers, and hence, the emergence
of big personalized user sensor data set can be expected in nearest future. This makes
Maurer et al. [104] research timely and meaningful for modeling Physical Wellness. At the
same time, the significance of accelerometer data can be witnessed from Berchtold et al. [19],
where authors classified ambulation and phone activities. The task was completed based on
fuzzy inference model, which leverages phone accelerometer data only. Later on, “Centinela”
framework [93] complemented the accelerometer data with vital signs. As a result, it was
able to achieve high accuracy of 97.5% in five ambulant activities recognition task. Last but
not least, “Cosar” [140] system took advantage of GPS data by performing spatial-dependent
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activity pruning for those activities that are not likely to happen in a certain location (e.g.
watching TV in Central City Park). The approach helped to boost the activity recognition
performance significantly.

The one research direction, which is most relevant to us belongs to the so-called “Objective
Self” trend [80, 81]. Going beyond “Quantified Self”, Jain et al. [80] raised a new research
problem of simultaneous multi-source multi-modal data co-analysis in nearly real-time
settings. Later, Jalali et al. [81] designed a closed-loop system that observes signals to notify
an individual about appropriate sources that could facilitate the implementation of desired
actions [81]. Since the research topic is quite new, in both works authors did not evaluate
models that can process sensor and social media data simultaneously. However, these works
raised the very important research problem and may serve a good backbone for individual
user profiling. At the same time, there was research conducted towards Physical Wellness
inference. These works bring research community closer to realizing the ideal of 360◦ user
profile learning [49] in Wellness domain. We review them in next section.

Physical Wellness Attributes Inference

Inspired by the newly-discovered possibilities of social media data, medical and healthcare
communities adopted social media and sensor data in different Physical Wellness applications.
For example, Eggleston et al. [46] used social media to monitor food-related habits for
obese and diabetes patients, while Fried et al. [62] predicted diabetes and overweight rates
for 15 US cities. At the same time, Mejova et al. [105] and Silva et al. [152] attested to
the predictive power of Foursquare-based features for the group obesity inference task and
cultural differences analysis, while Abbar et al. [1] leveraged Twitter data in an attempt
to predict obesity and diabetes statistics based on food names in tweets. Later, Weber et
al. [174] guided machine learning models based on data from MyFitnessPal1 to predict a
success of users’ personal diet plans, while Park et al. [122] studied publishing traits of social
media users who openly share their individual health and fitness related information. Yuan
et al. [182] studied the approaches to utilize clinical measurements to enhance the results of
Alzheimer’s Disease prediction, Akbari et al. [4] proposed a multi-task learning framework
for individual Wellness events categorization. These research efforts were made towards
Wellness lifestyle analysis, and the results show the great potential of social media data to
assist in Wellness related research. However, the applicability of the above research works
is limited, due to naive data analytics approaches utilized and single data modality usage.
Moreover, these works a mainly descriptive in nature, which does not allow for their usage
in individual Wellness user profile learning application domain. The above again suggests
the necessity of developing new comprehensive individual user profile learning approaches in
Wellness domain.

1myfitnesspal.com
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2.2 Group User Profiling and Urban Mobility

Group user profiling aims at learning the collective behavior of users groups that are also
known as user communities in social media computing. An intuitive approach for performing
user profiling at a group level is to discover communities of users, which can be done by
applying unsupervised learning (i.e. clustering) on user relationship graph [185].

2.2.1 User Relationship Graph Construction

As noted above, it is important to find representative user communities to leverage on a
group knowledge for various applications. Such task is commonly approached by modeling
users’ relationship as a graph so that dense subgraphs of such graph can be treated as user
communities. The graph can be constructed in a several ways: (a) based on social connections
between users (i.e. follower/followee relationship) [61]; (b) based on user-generated content,
when the edges of the graph are weighted as a distance between data representations of
users (i.e. cosine, Euclidian, or Heat distance); or (c) as a combination of the above two
methods. In next sections, we review related works on user community detection, where user
relationship graphs are constructed via one of the strategies above.

2.2.2 Community Detection from Single Data Source

Similar to individual user profiling, the task of group user profiling was mainly approached
from a single data source/modality perspective. The conventional community detection
methods and their variations can be roughly divided into five disjoint groups:

1. Graph partitioning is the group of community detection approaches, where G’s
vertices are divided into p groups of a predefined size, such that the number of edges
between groups is minimized. This class of approaches requires prior knowledge about
the size of clusters, which is not the case in most of the large-scale scenarios.

2. Hierarchical Clustering is the collection of clustering approaches that discover
hierarchical structures in G. The G’s vertices are grouped together based on a specified
similarity measure so that more similar vertices of the graph would fall into the same
cluster. There are two major categories of hierarchical clustering approaches. In the case
when clusters are joined iteratively, a clustering algorithm is called agglomerative [111],
while when the communities are obtained by removing edges between nodes, it is said
to be divisive [65].

3. Partitional Clustering approaches try to partition G based on a given similarity
measure. The overall goal is to separate the data points into k disjoint sets, based
on the distance between data points and clusters’ centroids (e.g. K-Means clustering
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(Alsabti et al., 1997)). The most commonly used objective functions are Minimum
K-clustering and K-center. The Minimum K-clustering evaluates clusters regarding
cohesion by minimizing the diameter of a cluster. K-center, in turn, minimizes the
distance between each data point in a cluster and the cluster centroid by merging or
removing data points as well as redefining the centroid.

4. Spectral clustering approaches are targeted to solve the MinCut problem [166]. For
a given number k of subsets, the MinCut, essentially chooses a partition C1, ..., Ck

such that it minimizes the expression: cut(C1, ..., Ck) =
∑k

i=1W (Ci, Ci), where Ci
stands for a compliment of Ci, and W (A,B) =

∑
u∈A,v∈B ρ(u, v), and ρ is a distance

function. Such a formulation allows us to find k user communities C1, ..., Ck, that are
grouped according to some criteria (defined by distance function ρ). The two most
commonly used formulations of the MinCut problem are RatioCut and the so-called
NCut [166]. The idea behind RatioCut is based on an assumption that the resulting
communities could have similar size, while NCut formulation conditions the sum of
edges’ weights in each community to be minimized among all communities. Though
both RatioCut and NCut are NP -Hard [166], there were many approximate solutions
created for the above problems. One of the existing MinCut approximations is the
spectral clustering approach, which is defined as a standard trace minimization problem:

min
U∈Rn×k

tr(UᵀLsymU), s.t.UᵀU = I. According to the Rayleigh-Ritz theorem [102], the

spectral clustering optimization problem can be solved as the first k eigenvectors of the
normalized graph Laplacian Lsym = I−D−

1
2WD−

1
2 , where W is the adjacency matrix,

and D is the degree matrix of the graph G, and the final community assignment can be
obtained by performing clustering (i.e. K-Means clustering) in the eigenvector space.

5. Quality optimization approaches are based on the idea that communities can also
be identified based on the measure of a quality of partition. This measure is defined
by a quality function, which is established to assign a numerical score to each detected
community. In such a way, communities can be further ranked based on their assigned
score. The most popular quality function was by Newman and Girvan [65] and called
modularity. In short, the idea is based on the assumption that a random graph does
not have a community structure, so the possible existence of communities is revealed
by the comparison between the actual density of edges in a community if the vertices of
the graph were attached regardless of community structure. The problem of modularity
maximization is proved to be NP − complete [24], but was successfully approximated
in a reasonable time. Specifically, in spectral graph theory, the modularity can be
represented in a matrix form as follows. Let d denote the degrees of each vertex, where
di ∈ Z+, i = 1, ..., n, where Z+ denotes the set of non-negative integers. Let B be
the modularity matrix with bij = aij − didj

2m . The modularity then can be written in a
form of a standard trace minimization problem: min

H∈Rn×k
1
2m tr(H

ᵀBH), s.t.HᵀH = I.

According to Newman [109], the above optimization problem can be solved as the first
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k eigenvectors of B = A
2m −

ddᵀ

4m2 , while the final community assignment can be obtained
by performing clustering (i.e. K-Means clustering) in the eigenvector space.

2.2.3 Community Detection from Multiple Data Sources

In the case of community detection from multiple data sources, it is common to represent
multi-view data in the form of hypergraphs or multi-layer graphs. A common strategy for
processing such a graph is to separate it into simpler graphs. Following this strategy, Zlatic
et al. projected the hypernetwork to three simple single-source networks for users, tags, and
resources, respectively [186]. They then used bottom-up optimization algorithm in each
of the single-modality networks. Similarly, Neubauer and Obermayer [108] split the initial
multi-view hypernetwork into a user-tag network, a user-resource network, and a tag-resource
network to define an extended modularity and then applied the modularity maximization
clustering. Lu et al. adopted the similar projection approach followed by employing k-means
clustering [100]. However, in the above works, the important information about source
relationship is lost, wich does not suggest their usage in real-world settings. Meanwhile, Su
et al. [157] demonstrated the usefulness of multi-source community discovery for various
applications; Rhouma and Romdhane [139] proposed an approach for multi-source user
community detection in partially-overlapping social network graphs; while Zhao et al. [185]
identified multi-modal overlapping communities of Foursquare users. Finally, Dong et al. [45]
introduced a multi-source clustering approach, where the distance between different data
sources was measured on Grassmann Manifolds. The works mentioned above are supportive
of utilizing multi-source community detection strategies; however, they are limited because
inter-source relationships were not incorporated during the community discovery process.
This could potentially lead to sub-optimal results in the real world scenario.

2.2.4 Urban Mobility Applications

There are two main approaches for evaluating community detection algorithms: explicit
evaluation and implicit evaluation [185]. Explicit evaluation uses a quality measure (e.g.
Modularity [65]) to explicitly compare community detection results achieved by different
algorithms. However, there is no widely accepted measure that is able to quantify community
detection results in the case of multi-source community detection. Moreover, many of such
quality estimation measures were found to be weakly related to the actual condition of
the detected communities [61]. Implicit evaluation, in turn, compares results achieved by
approaches that belong to other application domains (e.g. Recommendation, Classification,
etc.). Such approaches must be based on earlier obtained communities. Implicit evaluation
can be used to compare both single-source and multi-source community detection approaches.
In this thesis, we perform the implicit evaluation of group user profiling by comparing
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cross-source recommendation results in the Urban Mobility application domain. In next
sections, we review the corresponding related work.

Urban Mobility Analysis

The lack of portable devices that can track human’s locations over time made early Urban
Mobility research difficult to be carried out at a large scale. The first large-scale research was
conducted by monitoring the spread of marked 464 thousand dollar notes that were reported
millions of times in different locations via the specially created web page [70]. Authors
have calculated the distance between any two subsequent reports for each note followed by
distance probability density estimation. As a result, they concluded that the distribution of
human displacement (movement) follows the power-law distribution. After the first phone
call details record (CDR) dataset had been released for open use, many research works were
published in an attempt to process it for various applications. One example is the paper
by Akyildizet al. [5]. The authors confirmed the power-law nature of human displacement
distribution by considering human movements in long distances.

With the emergence of smartphones in 2000s, the data from location-based social networks
was broadly adopted in many research works. Specifically, the authors focused on friend
recommendation based on mining location patterns [145], location recommendations [123, 16],
or venue category recommendation [53]. One good example of location recommendation
research was performed by Ye et al. [179, 180]. First, the authors mined spatial-temporal
patterns between individual points of user trajectory followed by pattern semantic meaning
assignment. Later, authors extended the earlier proposed approach by considering implicit
relations between venues (co-visiting and category similarity) and incorporating such statistics
as check-ins distributions on daily (24 hours) and weekly (7 days) basis [180]. At the same
time, Bao et al. [16] considered location sequences at different spatial granularities to measure
inter-user similarities aiming to tackle the user recommendation (friend recommendation)
problem. The authors incorporated venue popularities separately and proposed novel sequence
matching algorithm as part of the hierarchical graph-based similarity measurement model.
It is important to note that most of the proposed approaches are based on the so-called
collaborative filtering (CF) paradigm. Later on, Noulas et al. [117, 118] and Scellato et
al. [145] analyzed user mobility patterns based on LBSN data at a large scale. The dataset
was collected from Foursquare and Gowalla LBSNs and served as a good support to examine
the classical user mobility modeling approaches [156]. Noulas et al. [118] concluded that
simple metrics like distance cannot describe human migration rules accurately and they need
to be supported with richer data. Such data can be inferred from LBSN. Besides providing
accurate user location, LBSNs also offer venues description (name, type, annotation). It gives
an opportunity to make precise assumptions about the nature of venues and group them
in users’ interest groups (restaurants, clubs, universities, etc.). As a result, authors built a
real-time supervised learning model that combines various data provided by LBSNs [118].
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Later Noulas et al. [117] extended the above model to perform new venue recommendation
task by adopting various recommender system algorithms from the web domain. Another
complex user mobility modeling approach was proposed by Lian et al. [96]. The authors
solved POI recommendation task by applying weighted matrix factorization model on LBSN
data. The proposed model incorporates the spatial clustering phenomenon into the matrix
factorization process. It improves POI recommendation performance as a result.

At this point, one can notice that the location-based social networks bring not just one more
dimension to traditional social networks, but much more precise implicit user mobility signal.
It couples precise venue locations in geographical mobility point of view and venue semantic
annotations in textual and visual mobility point of view. The richness of data from location-
based social networks inspired us to select LBSN as a target domain (recommendation
domain) for implicit evaluation of our cross-source group profiling approach. Below, we
highlight the related works on cross-source cross-domain recommendation.

Cross-Source and Cross-Domain Recommendation

Probably one of the first studies towards recommendation performance improvement based
on multi-source data was conducted by Abel et al. [2]. The authors aggregated user profiles
from Flickr, Twitter, and Delicious2 to demonstrate that their cross-system user modeling
strategies have a large impact on the recommendation quality in cold-start settings. At the
same time, Tiroshi et al. [162] utilized network-related and domain-related features to perform
user interest recommendation. Later on, Yan et al. [177] proposed a two-stage solution of
cross-source video recommendation problem: first, user preferences were transferred from
an auxiliary network by learning cross-network behavior correlations; next, the transferred
preferences were integrated with the observed behaviors on target network in an adaptive
fashion. Concurrently, Qian et al. [130] introduced a probabilistic framework that solved the
problem of cross-domain recommendation by utilizing shared domain priors and modality
priors for collaborative learning of a latent representation. Recently, Farseev et al. [53]
performed cross-source venue category recommendation by implementing a recommender
system based on their proposed Multi-Source re-Ranking approach, where the ranks of
individual sources were obtained by performing nearest neighbor collaborative filtering.
These works are related to our study regarding the cross-source approaches utilized. However,
they ignore the relationship between data sources. Such assumption is unrealistic in the
real-world settings.

2del.icio.us/
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2.3 Summary

In this chapter, we reviewed related works on individual and group user profile learning in
Wellness and Urban Mobility domains. First, we showed the increasingly popular research
direction of individual user profiling, which is mainly focused on individual user attributes
inference, such as Age, Gender, Personality, etc. We then reviewed the corresponding
research attempts in Physical Wellness domain. Then, we briefly reviewed conventional
community detection methods for standard networks with one dimension of interaction, as
well as existing approaches for community detection from multiple sources. We finalized our
literature survey by reviewing related works in the Urban Mobility application domain. From
the survey, it can be seen that user profiling from a single data source/modality is a relatively
popular research direction. However, till now, the research on multi-source user profiling for
Wellness and Urban Mobility is sparse and requires further elaboration. Particularly, most
of the works either descriptive in nature, use only a single data source, make unrealistic
assumptions, or utilize naive data analytics approaches. They may not be useful to gain
deeper insights from multi-source social media and wearable sensors data.
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Data Gathering And Framework Overview

In this chapter, we first outline our novel multi-source data gathering strategy and cross-
network account disambiguation technique. We then describe the harvested multi-source
datasets and glance through our proposed user profiling framework.

3.1 Data Gathering

3.1.1 Multi-Source Data

It is well-known that it is essential to incorporate multimodal data from various sources that
represent users from multiple perspectives [54, 113] for building a comprehensive user profile in
both Wellness and Urban Mobility domains. At the same time, to build a complete individual
Wellness profile, it is necessary to utilize information about users’ physical health [41, 4].
Meanwhile, to gain insights into users’ Urban Mobility, it is necessary to incorporate their
movement tracks while considering types of places they visit [116]. In the following, we
describe the commonly-used data modalities and their potential for individual and group
user profiling.

First, it was noted that textual information is one of the most valuable contributors towards
user profile learning, mainly because of its high availability and its ability to describe users’
daily routines comprehensively [49]. For example, users often post in microblogs about their
recent activities and health updates [4]. This information is related to users’ Wellness and
Urban Mobility profiles [4]. Second, it was previously observed that visual data plays a
significant role in age and gender prediction since it describes users’ visual preferences [49]. It
is reasonable to hypothesize that this data is also useful for user profile learning in Wellness
and Urban Mobility domains. Third, it was reported that location data is essential for urban
Mobility analysis [117], while actual location categories are helpful in wellness attributes
inference [105]. This demonstrates the potential of data from location-based social networks
for use in Wellness and Urban Mobility research. Finally, data from wearable sensors was
discovered to be valuable for solving the activity recognition [92] and health monitoring [15]
problems, which shows its potential towards Wellness profile learning.

20



Chapter 3. Data Gathering And Framework Overview

Considering the above, we selected the following social networks for our research:

• Twitter (the largest English-speaking microblog) micro-posts to be used as a textual
data source.

• Instagram (the largest mobile Image-sharing service) pictures and its descriptions
(comments) for use as image and textual data sources.

• Foursquare (the largest location-based social network) check-in records and its corre-
sponding comments (shouts) to be used as venue semantics, Mobility, and textual data
sources.

• Endomondo (one of the largest sports activity-tracking social networks) workouts to
be used as a sensor data source and ground truth collection (BMI category and “BMI
Trend” attributes).

It is worth mentioning that other than providing the so-called, exercise semantics (i.e. sports
activity type, as in Fitocracy and MyFitnessPal), Endomondo also serves as a rich source
of sequential data from wearable sensors and reliable wellness-related ground truth. The
exercise data sequences are often publicly available and usually include a series of multi-
dimensional data points (See Figure 3.1), each of which may contain such attributes as
Altitude, Longitude, Latitude, Time, and Heart Rate (in cases when a heart rate sensor is
set up). Additionally, the wellness-related ground truth labels can be derived from publicly
accessible Endomondo user profiles’ web pages, which often include such personal attributes
as Country of Residence, Postal Code, Age (Birthday), Gender (Sex), Height, and Weight
(See Figure 3.2). These attributes are either manually input by Endomondo App users
or automatically measured by connected “smart” sensors (e.g. FitBit Aria Smart Scale1).
The above dictates that Endomondo data goes beyond representing users from one more
modality, but bridges the gap between social media-based users’ representation and their
actual physical activities and condition.

At the same time, it is necessary to mention the crucial importance of Foursquare data for
Urban Mobility research. In addition to the information about user geographical movements
and the GPS positioning, Foursquare places provide venue-specific metadata, which is
also known as venue semantics. Such metadata includes semantic information about the
categories of places in Foursquare, which now consists of 764 different location types. This
data is essential for Urban Mobility research since it can be utilized as a proxy to model the
preferences of mobile users regarding activities they like to perform in the city. Furthermore,
the availability of metadata allows for examining real-time aspects of user movement by
utilizing check-in time, which is available with per second granularity.

1https://www.fitbit.com/sg/aria
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Figure 3.1: Publicly available Endomondo workout

Figure 3.2: Publicly available Endomondo user profile
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3.1.2 Cross-Network User Identification and Data Collection

To collect the data generated by the same individuals from multiple social networks, it is
necessary to solve the task of cross-network user identification [183]. One approach to solving
this issue is the utilization of social network aggregation platforms, such as About.me2.
About.me enables people to create a public online “name card” that includes a self-described
biography and links to the one’s social network accounts and personal websites. This
information is usually sufficient for further multi-source data collection. However, according
to Alexa Internet Survey3, About.me is ranked as an unpopular website (7, 575th worldwide
position), while some research groups describe About.me users as atypical [97]. The tendency
of About.me users to leverage on multiple social networks aiming to benefit from having
an online content aggregation point could explain their abnormal online behavior [97].
Consequently, their generated data could be biased by their online goals and may lead to
sub-optimal user profiling performance at both individual and group level. Furthermore, the
available amounts of appropriate About.me data does not allow for conducting research in
Wellness and Urban Mobility domains at a large scale.

Motivated by the gaps mentioned above, in this thesis we propose the new approach for
harvesting social multimedia data at a large scale. Specifically, we utilize one social network
(i.e. Twitter) as a “sink” for re-post data from other social networks (Instagram, Foursquare,
Endomondo), so that the linkage between social media portals can naturally be obtained
with close to zero error rate. The data harvesting process can be described by the following
three steps:

1. Search of seed users: We collect the so-called “seed” set of Twitter users, who were
recently active in other social networks in particular geographical regions. For example,
as we mentioned earlier, the sensor data is of crucial importance for physical Wellness
profiling. We thus perform Twitter search4 for those users who have recently posted
the hashtags “#Endomondo” or “#endorphines” together with the expression “I just
finished” in their Twitter timeline, which allows us to find users who are active in
both Endomondo and Twitter. These users form the “seed” user set for our research
in Wellness domain. Meanwhile, location semantics data from Foursquare is known
to be essential for Urban Mobility research. Considering this, we utilize the Twitter
geo-enabled search to perform the location-dependent tweets exploration in Singapore,
London, and New York. To do so, we search for those Twitter users who have recently
posted the keywords “swarmapp.com” in their tweets around Singapore, London, and
New York. These users form the “seed” set for our research in Urban Mobility domain.

2http://about.me/

3http://www.alexa.com/siteinfo/about.me Retrieved on 23 January 2017
4dev.twitter.com/rest/public
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Figure 3.3: Twitter repost of an Endomondo workout

2. User-generated content collection: We then start a Twitter “stream”5 that involve
all “seed” users and download their multi-source user-generated content (via URLs
to the original posts, provided in tweets). Noticeably, in this step we solve the user
identification problem, since we fulfill the cross-network account mapping whenever
users perform a cross-network activity (i.e. posting an Instagram image on Twitter)6.

3. Ground truth collection: During the Twitter crawling process, we conducted daily
monitoring of Endomondo users’ accounts and recorded all the BMI updates during
the whole data collection period7.

3.2 Multi-Source Datasets

By following the above data collection procedure, we harvested two sets of multi-source
data — NUS-MSS [54] and NUS-SENSE [51]. NUS-MSS dataset was harvested in three
geographical regions with the obligation to all its users to be registered in Foursquare. The
applied requirement allows for NUS-MSS usage for Urban Mobility research. NUS-SENSE
dataset was collected without geographical restrictions, but with the requirement to all its
users to be active in Endomondo (be registered in Endomondo and perform Endomondo

5dev.twitter.com/streaming/public

6To be confident in cross-network account mapping correctness, we remove all retweets and ensure that all
cross-network messages were automatically tweeted via cross-linking functionality of the corresponding social
media App (i.e. Instagram)

7Users’ Weight and Height updates were used for computing their BMI, which was utilized to estimate
“BMI Trend” ground truth attribute.
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Table 3.1: Number of data records in NUS-MSS dataset

City Num. of users Num. of tweets Num. of ch-ins Num. of images

Singapore 7, 023 11, 732, 489 366, 268 263, 530

London 5, 503 2, 973, 162 127, 276 65, 088

NY 7, 957 5, 263, 630 304, 493 230, 752

workouts). The last restriction equips every NUS-SENSE user with large-scale sensor data,
which allows for the dataset utilization in Wellness application domain.

3.2.1 NUS-MSS dataset

Overview

NUS-MSS [54] data crawling process started on 10 July 2014 in Singapore, London and
New York regions, and ended on 20 Dec 2014. Considering the sensitivity of users’ private
information, the dataset was released in a form of features instead of the original data. The
number of data records for each city is summarized in Table 3.1.

Ground Truth

The age, gender ground truth was crawled from the publicly available Facebook pages. The
Facebook-Foursquare-Twitter account ID mapping was obtained via Foursquare REST API8.
The significant part of users in Singapore (3, 849 records) have mentioned their gender, while
only a few have provided their actual age (305 records). In order to complement age-related
ground truth, we estimated the missing age from their education path. To encourage other
broad research, we also released other ground truth records, such as Education, Employment,
Relationship, and Income Level. The venue categories (venue semantics) ground truth was
collected during check-in crawling process (see Section 3.1.2), since such information is
available on check-ins’ web pages.

8developer.foursquare.com
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(a) (b)

Figure 3.4: Illustration of the distributions of venue categories and image concepts over
genders and ages NUS-MSS dataset. (a) illustrates the distribution of Foursquare venue
categories for different genders; while (b) illustrates the distribution of Foursquare venue
categories for different age groups

Table 3.2: Number of data records in NUS-SENSE dataset

Source Twitter Endomondo Foursquare Instagram

Num. of Posts Labels 1676310 140926 19743 48137

Num. of Users Labels 5375 4205 609 2062

Num. of BMI Categories Labels 1052 870 116 372

Num. of BMI Trands Labels 147 136 18 51

3.2.2 NUS-SENSE dataset

Overview

NUS-SENSE [51] data have been harvested in the period of 1 May 2015 to 28 Aug 2015 by
following the process in Section 3.1.2. To preserve users’ privacy, the dataset is released
in the form of data representations (features) and anonymized multi-source user timelines,
instead of the original user posts. Table 3.2 lists the dataset statistics.
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(a) (b)

Figure 3.5: Illustration of the distributions of users among different (a) BMI categories
and (b) “BMI Trends” in NUS-SENSE dataset

Ground Truth

During the Twitter crawling process, we monitored the Endomondo users’ accounts daily
and recorded all the BMI updates during the whole data collection period. The average
between a user’s last Weight and Height updates was used to compute his/her BMI. The
difference between a user’s first and last Weight and Height updates was used to estimate
his/her “BMI Trend”. In the dataset, users are well distributed in all BMI categories. From
Figure 3.5, it is apparent that the highest percentage of users (38%) belong to “Normal” BMI
category and the lowerest percentage of users (3%) belong to “Moderate Thinness” BMI
group. It suggests that there are sufficient data samples to train a supervised model for BMI
category classification task, but the evaluation must be conducted on each BMI category
separately to avoid the imbalanced dataset evaluation problem. It is also noticed that the
distribution of users among “BMI Trend” is slightly shifted to the “Decrease” (56%) category,
which can be explained by Endomondo users’ general intention to “lose weight”.

3.3 Overview of User Profiling Framework

After the explanation of our data and the collection procedure, we are now ready to introduce
the high-level structure of our user profiling framework in Wellness and Urban Mobility
domains. We outline the framework structure on Figure 3.6.

From the Figure, it can be seen that the user profiling pipeline consists of four distinct steps:

1. Multi-Source data collection: To harvest multiple data sources from the same
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Figure 3.6: User Profiling framework block structure

set of users, we utilize the crawling strategy as outlined in Section 3.1.2. Since the
framework performs seamless user profiling in Wellness and Urban Mobility domains,
it is necessary to deploy at least four independent Twitter stream multi-source crawlers
— one for each geographical region (Singapore, New York, London) to harvest Urban
Mobility data, and one for sensor data crawling.

2. Individual and group user profiling: This step includes the employment of in-
dividual and group user profiling techniques on previously harvested multi-source
social media data. Individual user profiling in Wellness Domain can be split into two
sub-tasks:

(a) Individual demographic profiling from multi-source multi-modal data via utilizing
our developed cross-source ensemble learning technique “SHCR”. Briefly, SHCR
unites multiple machine learning approaches into a late-fused ensemble and
iteratively learns the weight of each data modality by applying Stochastic Hill
Climbing with Random Restart (SHCR) search. The data sources utilized are
Twitter, Instagram, and Foursquare.

(b) Individual physical Wellness profiling from multi-source multi-modal data and the
data from wearable sensors. We treat individual user profiling in physical Wellness
domain as supervised learning task. To do so, we automatically infer user BMI
and “BMI Trend” attributes by applying Regularized Multi-Source Multi-Task
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Learning on data from Twitter, Instagram, Foursquare, and Endomondo.

Group user profiling in Urban Mobility domain is treated as unsupervised learning
problem (user community detection problem). It is approached by performing regular-
ized multi-layer spectral clustering, which is contained by automatically-constructed
social-network relationship graph.

3. Application of individual and group user profiling: At this step, we use individ-
ual and group user profiling results (predicted values of individual user attributes and
user communities assignment) for particular applications. Previously inferred demo-
graphic attributes together with predicted Physical Wellness attributes are combined
into online-to-offline individual Wellness Profile. Extracted user communities (group
user profile), in turn, serves as a backbone of the venue category recommendation
system in Urban Mobility domain.

4. Integration into social multimedia analytics platform: The last step is the
integration of the results obtained at the previous stages into one social multimedia
analytics platform. The step includes deployment of data gathering approaches together
with user profile models into a cloud environment, their automatization and presentation
to analytics consumers.

3.4 Summary

In this chapter, we first presented inter-network account mapping and data harvesting
procedures, as well as provided an overview of our user profiling framework. Second, we
introduced the technique for cross-source user identification, which is based on cross-posting
activity monitoring. We then described the multi-source data harvesting procedure for
Wellness and Urban Mobility application domains. Lastly, we provided an overview of
our user profiling framework and described each step of its execution pipeline. The major
contribution of this chapter is the cross-network data gathering and alignment scheme that
allows for large-scale data gathering from an arbitrary number of social networks that are
enabled with inter-network reposting feature.
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Integrating Sensors And Multiple Social Media
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In this chapter, we propose two multi-source user profiling components that form our indi-
vidual user profiling solution in Wellness domain. The first model infers users’ demographic
attributes via ensemble learning, while the second approach applies regularized multi-task
learning to infer BMI category and “BMI Trend” attributes from social media and sensor
data. Extensive experiments demonstrate the effectiveness of the proposed solutions.

4.1 Multi-Source Ensemble Learning for Demographic Pro-
filing

In this section, we explore the so-called demographic user profiling, which is the essential
part of Wellness profile. The individual demographic profile typically includes age and
gender attributes. These demographic attributes were also studied in popular evaluations
named PAN [134, 136]. In general, the demographic profile is often used in marketing to
describe a demographic grouping or a market segment. By considering users’ demographic
aspects, marketing specialists able to gain deeper insights into users’ behavior and interests
understanding. Meanwhile, in advertisement domain, age and gender significantly affect the
list of potential products that can be routed to a given consumer: cars may be advertised
mostly to adult males; while toys to kids and their parents. Most importantly, demographic
profiling is essential for Wellness domain. For example, to evaluate the degree of weight-
related health problems based on one’s Body Mass Index (BMI), it is important to consider
age and gender of the person. Precisely, same BMI category may serve as a sign of multiple
chronic diseases for young adults, while considered to be normal for the older ones [40].

Demographic user profile learning by jointly considering multiple sources is, however, non-
trivial, due to following reasons:

• Multiple data sources: Users frequently enroll in multiple on-line social forums, which
captures the same users from different views. For example, Linkedin conveys users’
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formal career path; while Twitter casually uncovers users’ daily activities. Effective
integration of multi-view data from different sources is a tough challenge.

• Multi-modal data: Beyond texts, other modalities often appear in users’ messages.
Users may take and share pictures in photo-sharing services like Instagram, upload
videos to Youtube and perform Foursquare check-ins. User profile learning based on
such heterogeneous information requires new theories that can seamlessly integrate
different data sources in a complementary way.

Inspired by the challenges above, in this section we seek to address the following research
question: (RQ1) Is it possible to boost individual user profiling performance by
incorporating multi-modal data from multiple social networks?

To answer the proposed research question, we perform comprehensive demographic profiling
of users from multiple social networks. In particular, we infer users’ demographic attributes
by modeling demographic profile learning as the ensemble of classifiers trained based on
multi-source dataset [54]. We verify that multi-source multi-modal data fusion is able to
improve the demographic profile performance significantly, as compared to mono source
utilization.

4.1.1 Data Representation

In order to perform multi-source demographic profiling, multi-modal data from different
sources must be efficiently represented in a mutually-consistent fashion. Below, we describe
our adopted data representation (feature extraction) approach for Location, Text, and Image
data representation.

Text Features

Prior to the textual feature extraction, the following pre-processing operations were per-
formed:

• Re-tweet filter: We did not incorporate re-tweet data in our experiments, because it
does not bring any information about users demographics.

• Slang transformation: We converted all slang words to synonyms based on the external
dictionary1 to reduce the number of possible terms in tweets.

• User mentions, place mentions and hashtags filter: We removed hashtags, user mentions
and place mentions from the tweets texts.

1www.urbandictionary.com
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After the cleaning process described above, we extracted and normalized the following textual
features:

• LDA-based Features. We merged all the tweets of each user into a document. All
documents were projected into a latent topic space using Latent Dirichlet Allocation
(LDA) [21]. The tweets of all users can be represented as a mixture of different topics.
We empirically set α = 0.5, β = 0.1 and utilized KNIME2 to train the topic model with
T = 50 topics for 1, 000 iterations. We ultimately built the topic-based user feature
vectors.

• Linguistic Features. We extracted LIWC linguistic features [127], which were founded
to be a powerful mechanism for age and gender prediction purposes [155]. For each
user tweet list, we extracted 71 LIWC features.

• Heuristically-inferred Features. We extracted some heuristically-inferred features. First,
we counted the number of URLs, number of hash tags and number of user mentions,
since these features are correlated with user’s social network activity level and can,
thus, indicate user’s age. Second, we counted the number slang words, number of
emotion words3, number of emoticons and computed an average sentiment score. These
features can be good signals of user personality traits, which in turn are gender and
age dependent [155]. Third, we computed the linguistic style features: “Number of
repeated characters” in words, “number of misspellings”, and “number of unknown to
the spell checker words”, which are often reflected by user’s age.

Location Features

We obtained 764 venue categories from Foursquare4. Take a user as an example. The user
has performed three check-ins in two restaurants and airport, but did not perform any
check-in in other venues; then the user’s venue category feature vector will consist of 764 real
values with cr (the feature representing restaurant) equals to 2/3 and another ca (the feature
representing airport) equals to 1/3. All the other values of feature vector will be equal to 0.

Visual Features

We mapped each Instagram photo to the pre-defined image concept dictionary. The con-
cept dictionary, comprising of 1000 daily life concepts (such as ball, flower, and chair), is
constructed from ImageNet. We trained the concept classifiers based on the concatenation
of “Bag-of-visual-words”, “Local Binary Patterns” (LBP) and “64-D Color Histogram”(CH)

2www.knime.org
3sentiwordnet.isti.cnr.it
4developer.foursquare.com/categorytree
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Table 4.1: Features summary

Modality Features Dimension

Text

Latent topics [21] 50

LIWC Features [127] 74

Heuristic Features 14

Image ImageNet concepts [44] 1000

Location Venue semantics [54] 764

features [44]. For the bag-of-visual-words, we used the difference of Gaussians to detect
keypoints in each image and extracted their SIFT descriptors. By building a visual code-
book of size 1000 based on K-Means, we obtained a 1000-dimensional bag-of-visual-words
histogram for each image. We then applied Principal Component Analysis (PCA) to reduce
the dimension of image feature space [84] to 50 condensed features.

We summarize all the above features and their characteristics in Table 4.1.

4.1.2 Demographic Profiling

Problem Formulation

As it was mentioned before, the task of multi-source demographic profiling is a challenging
problem. First, data sources are incomplete, since some users may use certain social networks
but not others. The issue can be approached by using data completion techniques [121] or by
amending incomplete data samples. However, data completion techniques may lead to the
noise propagation while the insufficient amount of data (caused by data amendment) may
result in the so-called “curse of dimensionality” issue. Second, different data modalities (and
the corresponding data representations) are heterogeneous with respect to the nature of the
data (e.g. text and images) and data representation dimension (e.g. 74 text LIWC features
and 1000 ImageNet image concepts). Such problem is often ignored by combining data in the
so-called “early-fusion” manner, where features are concentrated in one long feature vector
to be fed into the classifier [171]. Such an approach often leads to overfitting [73]. Moreover,
the natural difference of data sources will not be properly considered without taking into
account the difference in social network usage patterns [154].

In the previously-reported demographic profiling results [132, 9, 135, 134, 136, 133], one can
notice the higher predictive power of ensemble models, as compared to the single-classifier
baselines. The phenomena can be explained by the ability of ensembles to efficiently combine
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diverse text feature types and perform joint learning from them. One of the most widely-
utilized models was the Random Forest ensemble, which is essentially the combination of
bagging data manipulation strategy [25] and the idea of randomized decision tree classifier [26].
Formally, given a training set of pairs, where jth data sample is the vector xj (xj ∈ RK)
of K features and its corresponding scalar yj , bagging repeatedly selects a random sample
with replacement of the training set and fits the decision trees (built based on a random
subset of M << K features) to these samples. Predictions for unseen samples can be further
made by averaging the predictions from all the randomly-built regression trees by taking
the majority vote [26]. The aforementioned training procedure leads to better ensemble
performance because it is able to decrease the variance of the model without increasing the
bias. In other words, while the predictions of a single tree are highly sensitive to noise in
its training set, the average of many trees is not, as long as the trees are not correlated.
Bootstrap sampling and random feature selection are the ways Random Forest ensemble
de-correlates the decision trees in ensemble [77].

In earlier works, it was noticed [155] that the Random Forest often outperforms other
machine learning approaches, like SVM or Naive Bayes for Age and Gender classification
tasks. Inspired by the success of Random Forest classifier in solving related problems, we first
trained it with 145 random trees (determined by 10-fold cross-validation on training test)
based on early-fused data (concatenated feature vectors from all data modalities). However,
most of the baselines outperformed such a model in terms of classification accuracy. The
reason is simply that by training on early-fused data sources, Random Forest omits the
significant amount of training data (users who contributed not to all social networks) and
does not take into account the natural difference between data sources. To overcome these
problems, we employ the late fusion (ensemble learning) approach for joint incorporation of
multi-source incomplete heterogeneous data.

Demographic Profiling Ensemble

The structure of the late-fusion demographic profiling framework is presented in Figure 4.1.
It can be seen that our framework consists of multi-label Random Forest classifiers trained on
five feature types described earlier. The number of random trees for each classifier is found
by 10-fold cross-validation. The number of random trees for “Location”, “LIWC”, “Heuristic”,
“LDA 50”, and “Image concepts” features are set to 140, 120, 75, 70, 130 respectively.
To obtain balanced label distribution in the training set, we utilized the “SMOTE” data
oversampling technique [32].

The five Random Forest classifiers were integrated into the ensemble learning model; with
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Figure 4.1: Demographic profiling ensemble

the final classification score for each label computed as:

Score(l) =
k∑
i=0

P (l)i × di × wi × li
k

,

where P (l)i is a positive prediction confidence for label l of the i-th classification model,
di is the number of data records that were collected from current user to train the i-th
classification model, divided by average number of data records of given type collected for all
users, wi is the accuracy of the i-th classification model, and li is the “strength” of the i-th
classification model. In our experiments, we set wi to be equal to the macro accuracy level
of the corresponding i classifier, which is estimated after performing 10-fold cross validation
on each individual features set. We jointly learned the li coefficient for each modality by
performing the “Stochastic Hill climbing with Random Restart (SHCR)” optimization [141],
which is able to obtain local optimum for non-convex problems and, can, thus, produce
reasonable ensemble weighting.

We present an example on how ensemble model works for different data sources. Suppose
users ux and uy have 100 and 300 tweets respectively and we have already obtained the
classification accuracy for one of the Twitter feature set as 0.321. Then, the score of classifier
trained on these features P (l)ik will be multiplied by: wux = 0.321, dux = 100/200 = 0.5
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and wuy = 0.321, duy = 300/200 = 1.5 for ux and uy respectively. These scores will also
be multiplied by the current iteration assignment of lik . After all the five classifiers are
weighted as described above, the output scores will be averaged and the result will represent
the classification ensemble score assigned to label l on the current iteration k. The above
procedure will be repeated until the SHCR convergence, by varying the lik parameters on
each iteration aiming to maximize the overall accuracy.

4.1.3 Evaluation

As we’ve mentioned before, the number of male and female users in our dataset is similar
while the users’ age is mainly in the range of between 10 and 40 years old. The similar age
distribution was also observed in related works [155, 132]. Due to the uneven users’ age
distribution, we’ve divided users’ on age groups as follows: “< 20”, “20-30”, “30-40”, “> 40”.

We evaluated the performance of our approach in terms of macro accuracy, which is the
average accuracy between all classification labels. The evaluation metric was selected due to
its capability of equally treating all data labels in unbalanced datasets, so that the overall
performance will not be overrated. The evaluation of gender and age prediction was based
on 222 users who have reported their exact age and perform activity in all three data sources,
and can thus be considered as reliable ground truth. The age group prediction model was
trained based on other users whose age group was estimated from their education-related
information by performing rule-based classification (548 users). According to our experiment,
the bias of estimated ages does not exceed ±2.31 years. It is thus reasonable to use the
estimated age for training the age group prediction classifier. The gender prediction model
was trained based on 3, 544 users who have reported their gender and are not in evaluation
set. The age and gender prediction results are presented in Tables 4.3 and 4.2 .

From the Table, it can be seen that various data sources perform differently in profiling
social media users. For example, in gender prediction task, the LDA features play a crucial
role and perform the best among other single sources. The reason is that there exists high
difference in interests between male and female users. For example, female users may discuss
family and children, while male users tent to tweet about cars and finance. By integrating
all text-based features together with visual features, it introduces the best combination for
age and gender prediction among all bi-source ensembles, while the location plays a minor
role. The possible reason is that there are distinct differences in picture taking preferences
and writing style among different users’ age groups and genders. For example, older people
may take pictures of food and scenery, while younger users could be more emotional in their
tweets.

Finally, the best results for both gender and age group prediction are obtained by the late
fusion of all features using our proposed Random Forests ensemble. It outperforms all
single source models, different combinations of classifiers, state-of-the-arts techniques, and
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model trained on early fused sources. These results in positive reaffirmation of RQ15

by highlighting the usefulness of multi-source data integration for individual user profile
learning.

Statistical Analysis

To evaluate the performance of our model from the statistical point of view, we utilize weighted
Cohen’s Kappa (κw) measure (see description in Appendix A). In our case, κw quantifies
the level of agreement between two raters: 1) multi-source demographic profiling model and
2) ground truth labels obtained from users’ Facebook pages (see Section 3.2.1 for details on
ground truth collection). The utilization of the weighted Kappa is preferable (as compared
to ordinary Cohen’s Kappa) due to its ability of dealing with ordered prediction classes (i.e.
Age Groups) by making use of a predefined table of class disagreement penalization weights:
the higher the disagreement the higher the weight (more details are given in Appendix A).
In such a setting, the misclassification into the neighbor groups (i.e. <20 and 20-30) would
be penalized less as compared to misclassification into more different categories (i.e. <20
and >40). Generally, the table of weights is a symmetric matrix W with zeros in the main
diagonal (i.e. where there is an agreement between the two judges) and positive values off
the main diagonal. For the case of Gender classification (binary classification), the weight
matrix W was assigned as a unit matrix (all elements are 1s). For the case of Age Group
classification (multi-class classification), values in W were assigned according to their squared
distance from perfect agreement [27]. We also utilized p-value test (see Section 6.2.2) to
evaluate the significance level of the computed κw statistic.

Statistical analysis results are presented in Table 4.3. It can be seen that the value of
κw calculated for Age Group Classification results belongs to the “Fair” level of agreement
with Ground Truth labels [91]. The imperfect agreement can be explained by the highly-
imbalanced distribution of age group labels in our dataset as well as the limited applicability of
the Landis and Koch’s labeling scheme [91]. However, the obtained κw = 0.297 demonstrates
the statistically-significant (with p < 0.01) agreement between our proposed age group
classification model and the ground truth, which suggests that the problem of Age Group
classification was solved satisfactorily.

The inspiring observations can be made based on Gender classification results. From
Table 4.3, it can be seen that our proposed demographic profiling model is able to archive
κw = 0.745, which is ranked as “substantial” agreement with the ground truth [91] and
only 0.055 lower than “almost perfect” agreement benchmark [91]. By jointly considering
classification performance results as well as statistical analysis results, we can conclude that

5Is it possible to boost individual user profiling performance by incorporating multi-modal data from
multiple social networks?
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Table 4.2: Performance of demographic profiling in terms of Macro Accuracy. Data source
combinations. RF - Random Forest; NB - Naive Bayes; SVM - Support Vector Machine

Method Gender Age

Single-Source

RF Location Cat.
(Foursquare)

0.649 0.306

RF LWIC Text(Twitter) 0.716 0.407

RF Heuristic Text(Twitter) 0.685 0.463

RF LDA 50 Text(Twitter) 0.788 0.357

RF Image Con-
cepts(Instagram)

0.784 0.366

Multi-Source combinations

RF LDA + LIWC(Late Fu-
sion)

0.784 0.426

RF LDA + Heuristic(Late
Fusion)

0.815 0.480

RF Heuristic + LIWC (Late
Fusion)

0.730 0.421

RF All Text (Late Fusion) 0.815 0.425

RF Media + Location (Late
Fusion)

0.802 0.352

RF Text + Media (Late Fu-
sion)

0.824 0.483

RF Text + Location (Late
Fusion)

0.743 0.401

All sources together

RF Early fusion for all fea-
tures

0.707 0.370

RF Multi-source (Late Fu-
sion)

0.878 0.509
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Table 4.3: Performance of demographic profiling in terms of Macro Accuracy. State-
of-the-arts techniques. RF - Random Forest; NB - Naive Bayes; SVM - Support Vector
Machine

Method Gender Age

SVM Location Cat.
(Foursquare)

0.581 0.251

SVM LWIC Text(Twitter) 0.590 0.254

SVM Heuristic
Text(Twitter)

0.589 0.290

SVM LDA 50 Text(Twitter) 0.595 0.260

SVM Image Con-
cepts(Instagram)

0.581 0.254

NB Location Cat.
(Foursquare)

0.575 0.185

NB LWIC Text(Twitter) 0.640 0.392

NB Heuristic Text(Twitter) 0.599 0.394

NB LDA 50 Text(Twitter) 0.653 0.343

NB Image Con-
cepts(Instagram)

0.631 0.233

Statistical Analysis

Weighted Cohen’s Kappa κw = 0.745, p < 0.01 κw = 0.297, p < 0.01
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Gender prediction model fits not just research but also industrial requirements [55] and thus
can be utilized in the real-world scenario.

Error Analysis

From the previous sections, it can be seen that our proposed demographic profiling framework
can achieve better prediction performance as compared to different data source combinations
and other user profiling baselines. However, the age group prediction performance is not
sufficiently high and thus requires additional investigation to be conducted. In Table 4.4, we
present the evaluation results of demographic profiling framework trained on all data sources
with respect to each age group. We use Precision, Recall, and the F1 as evaluation metrics
and color different age group performance levels as follows: green — good performance; blue
— reasonable performance; brown — lower performance; red — low performance.

It can be seen that 20 − 30 age group can be predicted more accurately as compared to
other age groups. The model achieved high F-measure score due to its ability to balance
between high Precision (0.886) and comparably high Recall (0.634) scores. The balanced
and accurate predictions were achieved due to the high percentage of positive samples in
the dataset (see Table 4.4), as well as data representatives. Indeed, our computed statistics
on the dataset as well as the recent research suggest that young adults (18-29 years old)
are the most intensive Instagram (54%) [67], Foursquare (40%) [64], and Twitter (44%) [67]
users. Accurate detection of this category is of crucial importance for public wellness domain
since it is useful to have early identification of Wellness problems of young adults with the
provision of timely assistance to them. We would also like to highlight the high Precision
score obtained, which minimizes the number of false positives in the data, and thus allows
for better patient targeting within the ethically-sensitive Wellness domain.

At the same time, the prediction of the two less popular in social media age groups (<20,
30-40) reveals lower performance in terms of F-measure, but higher Recall (see Table 4.4).
The high Recall is desirable in Wellness application domain. For example, for the case of
online gaming addiction analytics [71] as well as social media dependence monitoring [119],
it is essential to influence as many young social media users as possible by delivering the
corresponding motivational online content, such as invitations to offline activities and wellness
lifestyle programs.

Lastly, let’s highlight the unsatisfactory prediction performance of the >40 age group. The
possible reason is the low number of training instances of this class, which is also consistent
with the population of modern social networks [67, 64]. However, considering the importance
of this age category for wellness application, the additional ground truth records can be
obtained by applying age-group targeted data gathering strategies (e.g. search for age
mentions in Twitter) as well as by utilizing social networks with older user population (e.g.
Linkedin). The latter is expected to achieve significant classification results improvement.
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Table 4.4: Performance of the demographic profiling framework trained on all data sources
with respect to each age group category. Evaluation metrics: Precision, Recall, F1

BMI Category % in Dataset Precision Recall F-Measure

< 20 77% 0.330 0.725 0.453

20-30 18% 0.886 0.634 0.739

30-40 3% 0.400 0.667 0.500

> 40 2% 0 0 -

4.2 Multi-Source Multi-Task Learning for Physical Wellness
Profiling

The previous section presents an initial study of individual user profile learning in Wellness
domain via integration of multiple data sources in ensemble model. We conducted first-order
and higher-order learning for demographic profiling in Singapore region. User demographic
profile is represented by age and gender attributes. From our experimental outputs, we can
drew the conclusions that: different data sources mutually complement each other and their
appropriate fusion boosts the user profiling performance. The latter positively answers our
research question and encourages further research in this direction. Eventhough we already
showed the way to predict such personal wellness attributes as age and gender, it is still
necessary to study physical Wellness profiling, since it is related to users’ physical health.
These may not be done without incorporation of information about actual physical status,
which can be approached by bringing in the data from wearable sensors.

This section focuses on the problem of individual wellness user profiling based on data from
multiple social networks and wearable sensors. Here, an individual wellness profile involves
personal user attributes [49] such as demographics (age, gender) [54], Body Mass Index
(BMI) category6, personality [28], or chronic disease tendency [4]. In this part of our work,
we focus on two important physical wellness attributes - BMI category and “BMI Trend’
(the direction of BMI fluctuation over time - Increase/Decrease). Both attributes are closely
related and correlated to one’s overall health. For example, Field et al. [57] discovered that
people whose BMI is higher than 35.0 are approximately 20 times more likely to develop
diabetes. Other benefits of such attributes include: a) BMI category can be further used
in public health domain to monitor wellness tendencies of social media users at the global
level; b) “BMI Trend” information can be utilized by users to rectify their lifestyle (i.e. via

6The BMI measure is defined as the body mass divided by the square of the body height. Based on BMI,
an individual can be categorized into one out of 8 BMI categories, namely “Severe Thinness”, “Moderate
Thinness”, “Mild Thinness”, “Normal”, “Pre Obese”, “Obese”, “Obese II”, and “Obese III” [175].
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interactive mobile application or a “Smart Watch” ), and by doctors to gain a complete
picture of patient’s health.

There are two challenges in addressing individual physical wellness profiling: 1) Data
representation. Besides the textual data, social media services involve data of various
modalities. For example, in Instagram, users share recently taken pictures and videos, while
in Endomondo7 users post information about their workouts, which is strongly dependent on
the temporal and spatial aspects. Integration of such heterogeneous multimodal data sources
requires development of efficient and mutually consistent data representation approaches.
2) Data modeling: Efficient data integration for individual wellness profile learning is
a tough challenge since the data from independent media sources is different in nature.
Furthermore, multi-source data is often incomplete, which means that some users may not
be active on all social networks. Lastly, personal wellness attribute categories (classes) are
often inter-related (i.e. the adjacent BMI categories could unite users of similar lifestyle
and social media content [105]), which must be taken into account at the learning stage.
Development of a learning framework that can handle all these issues is a crucial challenge.

Inspired by previous studies and the challenges above, in this work we seek to address three
research questions. First, to support the assumptions behind this study, it is important
to understand: (RQ1) Is it possible to improve the performance of BMI category
and “BMI Trend” inference by fusing multiple social media and sensor data?
Second, for further wellness profiling improvement, it is essential to gain insight into: (RQ2)
What is the contribution of sensor data towards BMI category and “BMI Trend”
inference? Finally, to perform efficient data fusion it is necessary to understand: (RQ3)
Is it possible to improve the performance of BMI category and “BMI Trend”
inference by incorporating inter-category relatedness into the learning process?

To answer the above research questions, we present a new computational framework for
Multi-Task Multi-Source Wellness Profiling (“M2WP ”). We introduce the techniques to
represent data from a new sensor data source (the Endomondo workouts) and other social
media sources: Twitter, Foursquare, and Instagram, from which we predict the users’ BMI
category and “BMI Trend”. To do so, we treat individual wellness profiling as a regularized
multi-task learning (MTL) problem, where different data source combinations for each
inference category are represented as MTL “tasks”. Concurrently, we consider inter-category
relationship by regularizing the MTL model by learning “similar” categories in a mutually-
consistent fashion. Last, but not least we perform error and feature importance analysis
aiming to understand which BMI categories can be inferred more accurately and which
particular feature types facilitate better inference of each BMI category.

7endomondo.com

42

endomondo.com


Chapter 4. Integrating Sensors And Multiple Social Media Data For
Individual Wellness Profile Learning

4.2.1 Data Representation

As mentioned earlier, efficient data representation is a significant step in multi-source profile
learning pipeline. Its importance is dictated by its ability to bridge the semantic gap
between different data modalities by producing mutually-consistent data representations.
The extracted features are described below.

Text Features

In this piece of work, we extracted textual data from the following data sources: Twitter
tweets, Instagram image captions, Instagram image comments, and Foursquare check-in
comments. All textual data was aggregated at the individual user level and filtered/corrected
by using Microsoft Office Spell Checker8. More specifically, we extracted the following
features:

• Latent Topic Features. We merged all the textual data of each user into a document.
All documents from multiple users were projected into a latent topic space using Latent
Dirichlet Allocation (LDA) [21]. We trained the topic model with T = 50 topics
(revealed the lowest perplexity score on interval from T = 1, 5, ..., 200), with α = 0.5,
β = 0.1 (determined empirically). Feature vector was constructed as a distribution of
each user among detected latent topics: ui,LDAText = (tli,1, tli,2, ..., tli,50).

• Writing style features. As in [54], we extracted such writing style features as: number
of mistakes per post, number of slang words per post, average post sentiment, etc. In
total, 14 features were extracted: ui,HeurText = (thi,1, thi,2, ..., thi,14).

• Lexicon-based features. We used crowd-sourced lexicon of terms associated with
controversial subjects from the US press [106] and the lexicon of terms’ healthiness
category [105]. Additionally, we extracted food type and average calorie content
from each post by incorporating the Twitter Food Lexicon [152]. Lastly, all the food-
related features were grouped in one user-dependent vector of size 32: ui,FoodText =

(tfi,1, tfi,2, ..., tfi,32).

Venue Semantics Features

Similar to [54], we represented location data as a distribution of users’ check-ins among
764 Foursquare venue categories. Such users’ representation describes venue semantics
preferences of Foursquare users and can be related to users’ food and activity preferences
[105]. To overcome the data sparsity problem, we further reduced the data dimensionality

8products.office.com
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by extracting Top 86 principal components [84] (preserves 85% of variance) and representing
the venue semantics data as: ui,LocCatPCA = (lcPCAi,1, lcPCAi,2, ..., lcPCAi,86).

Mobility and Temporal Features

As stated earlier, user mobility and temporal aspects are important in user profile learning
[54, 116]. The mobility features were computed based on users’ areas of interest (AOIs) [131],
which is, essentially, the geographical regions of high user’s check-ins density (regardless
the check-in venue semantics). AOIs were obtained by performing density-based clustering
[143] over the check-ins of each user (with ε = 0.05, the minimum number of points
MinPts = 3) and consider the convex hull of each cluster as a new AOI. The user’s AOIs
represent their geographical mobility patterns [116, 131] and is correlated to their wellness
lifestyle. We extracted the following 12 mobility and temporal features (ui,MobTemp =

(mti,1,mti,2, ...,mti,12)):

• Average number of posts during each of the 8 daytime durations, where each time
duration is 3 hours long (i.e. 15− 18). The feature is an indicator of user’s temporal
online activity and related to their wellness [31].

• Number of areas of interest (AOI). The feature reflects the mobility side of user’s
physical activity. For example, users with more AOIs may maintain more intensive
lifestyle. AOIs also represent user’s frequent areas of activity (i.e. home, office,
university/school) [131] and may indicate how far users are willing to travel on a daily
basis. It, in turn, reflects users’ wellness attributes, since it is related to their lifestyle.

• Median size of user’s AOIs9, which indicates users’ mobility inside each AOI. The
feature is an indicator of user’s everyday traveling habits inside their main activity
areas. It can, thus, indicate the approximate distance that the users are willing to
travel on foot.

• The normalized number of AOI outliers. The feature shows how often users visit places
that are not located inside their AOI, which may reflect the users’ “conventionalism”
level. Mainly, it shows how often users deviate from their regular mobility patterns,
which is related to users’ physical activity level.

• Median distance between AOIs. This feature reflects users’ movement at intra-city/inter-
city/international level. Specifically, it shows how often and how far users travel between
their activity zones. It could be daily trips to job place, vocation journeys or business
trips. Such a feature is related to users’ lifestyle and, thus, wellness.

Even though the venue semantics and mobility features were extracted from the same data
source, they are different in nature. Specifically, the venue semantics features represent users’

9Where AOI size is defined as the median distance between a center of mass and all points inside AOI
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geo-independent location preferences [172] (i.e. Restaurant, Cinema, Church). At the same
time, users’ mobility features describe users’ movement in space and related to their activity
level in a particular geographical region [116].

Visual Features

In order to represent data from visual modality, we computed distribution of each Instagram
photo among the 1000 ImageNet visual concepts [44]. We then averaged the values of each
1000 visual concept to obtain a user-dependent feature vector of size 1000. The image concept
detection was performed by leveraging on GPU implementation [82] of a state-of-the-art
deep learning framework GoogleNet [159]. Similar to venue semantics features, we extracted
Top 150 principal components [84] (preserves 85% of variance) from image concepts data:
ui,ImgConPCA = (vcPCAi,1, vcPCAi,2, ..., vcPCAi,150).

Sensor Features

One of the most informative data sources for wellness profile learning and, at the same time,
the most challenging regarding consistent representation, is the data from sensor devices.
The main problem is the necessity to consider the spatial-temporal aspect of sensor data,
since the static characteristics of each data sample can be biased toward individual’s health
and, thus, may not be suitable for further integration with other sources for joint profile
learning. To represent sensor data consistently with other data modalities, we incorporated
the following feature types:

• Workout statistics. We computed the following averaged features using all sensor data
samples for each user: Distance (Ascend/Descend), Speed, Duration, Hydration. Such
features represent users’ activity levels and is thus related to one’s wellness attributes.
In total, 10 features were extracted: ui,SensStat = (ssi,1, ssi,2, ..., ssi,10).

• External sensors statistics. Apart from wearable sensor features, we leveraged data
from external weather sensors (where it is available) such as Wind Speed and Weather
Type. It is known that weather may affect one’s exercise productivity. It can thus
serve as a useful complimentary signal for wellness attribute inference. To make the
feature set appropriate for model training, we represented each user as a distribution
among 44 weather types from our dataset, computed through all user’s workouts:
ui,SensExt = (sei,1, sei,2, ..., sei,44).

• Workout semantics. We also represented sensor data as a distribution of users’ workouts
among 96 Endomondo workout categories: ui,SensWCat = (sci,1, sci,2, ..., sci,96). The
representation describes users’ exercise preferences and also related to their wellness.

• Frequency domain features. It is important, to incorporate the temporal aspect of
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Table 4.5: Features summary

Modality Features Dimension Final dimension

Text

Latent topics [21] 50 50

Lexicon-based [51] 32 32

Writing style [54] 14 14

Image ImageNet concepts [44] 1000 150 (PCA)

Location
Venue semantics [54] 764 86 (PCA)

Mobility and Temporal 12 12

Sensor

Workout semantics 96 96

Frequency domain 495 54 (PCA)

Workout statistics 10 10

sensor data, since the signal fluctuations during an exercise are often related to one’s
wellness attributes. However, the user’s workouts are not directly comparable due
to the differences in the exercise types and duration, or the inconsistency in signal
sampling rates. To incorporate the temporal aspect of sensor data without binding
to actual signal duration, it is useful to project time series data into the frequency
domain. To perform such a transformation, we extracted features for each workout,
in three steps as follows: (i) We applied spline interpolation to fill in missing sensor
signal measurements (in cases of sampling rate < 1Hz or when it is inconsistent).(ii)
We transformed all data points from jth workout with r sensor signal measurements
(wj,ui = (d1, d2, ..., dr)) into relative differences between subsequent sensor signal
measurements: w̄j,ui = (d2 − d1, d3 − d2, ..., dr − dr−1). (iii) We applied Fast Fourier
Transform [23] followed by low band-pass-filter (0 – 0.5 Hz) to construct the energy
distribution among the 99 frequency bins for each of five sensor signal types, namely,
Altitude, Cadence, Speed, Heart Rate (HR), and Oxygen Consumption (Oxygen). We
then merged these 5 vectors together and took an average among all workouts to obtain
a frequency domain feature vector of size 495 for each user. Such a data representation
is no longer inconsistent among different users, since it models the “changes” of sensor
signal, rather than the absolute values of data points. To overcome the data sparsity
problem, we reduced the frequency-domain data representation dimensionality by
extracting its Top 54 principal components [84] (preserves 85% of variance) and
represented the data as: ui,SensFreqPCA = (sfPCAi,1, sfPCAi,2, ..., sfPCAi,54).

We summarize all the above features and their characteristics in Table 4.5.
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4.2.2 Physical Wellness Attributes Inference

To answer research questions (RQ1) and (RQ2), it is necessary to develop and evaluate a
machine learning solution that will fuse data from multiple social media sources and wearable
sensors for wellness attributes inference. Meanwhile, to answer research question (RQ3),
it is essential to consider inter-category relatedness at the learning stage. In the following
sections, we will address these issues one by one.

Problem Formulation

The problem of multi-source personal user profile learning is not an easy task since multiple
data sources are often sparse and block-wise incomplete [153]. This means that some groups
of users may contribute content only to certain social networks (Figure 4.2). Traditionally,
the problem can be solved by simply skipping incomplete data samples or by using data
completion techniques such as NMF [121, 153]. However, these two approaches may lead
to the “curse of dimensionality” problem in the first case, and to noise propagation in the
second. To overcome these problems, it is necessary to develop an efficient source fusion
technique [54]. Second, the categories of the wellness attributes are often inter-related. For
example, the adjacent BMI categories (i.e. “Obese II” and “Obese III”) are more related to
each other as compared to those that represent completely different BMI groups (i.e. “Severe
Thinness” and “Obese III”). Such relations must be properly modeled.

In this work, we treat the problem of multi-source individual wellness attributes inference
as a multi-task learning (MTL) [30] problem. MTL is an approach to inductive transfer
that improves generalization by using the domain information contained in the training
signals of related tasks as an inductive bias by learning tasks in parallel while using a shared
representation [30]. In other words, MTL aims to improve the performance of multiple
classification tasks by learning them jointly. Such a property of MTL makes it naturally
applicable to the problem of Multi-Source learning and serves the reason why we’ve selected
MTL idea as a backbone of our multi-source learning approach. One significant issue in
multi-task learning is how to define and employ a commonality among different tasks [184].
Intuitively, different data source combinations may share common knowledge for predicting
wellness attributes, and the “similar” wellness attribute categories must be correspondingly
represented inside the inference model. By following this philosophy, we define a multi-task
learning task as a unique combination of different sources for a given category (Figure 4.2),
while constraining the overall model by considering the relatedness among adjacent wellness
categories.

Notation: In the rest of this chapter, we use uppercase boldface letters (i.e. M) to denote
matrices, lowercase boldface letters (i.e. v) to denote vectors, lowercase letters (i.e. s) to
denote scalars, and uppercase letters (i.e. N) to denote constants. For matrix M = (mi

j),

47



Chapter 4. Integrating Sensors And Multiple Social Media Data For
Individual Wellness Profile Learning

Figure 4.2: Incorporating block-wise incomplete data into multi-task learning model.

‖M‖ =

√∑n
i=1

∑m
j=1

∣∣∣ mi
j

∣∣∣2 is the `2 (Frobenius) norm, while the ‖M‖2,1 =
∑n

i=1

∥∥mi
∥∥ is

the `2,1 norm [98] (mi is the ith row of the matrix M). To simplify the reading process, we
summarize all defined notations in Table 4.6.

Modeling Multi-Source Fusion

First, we propose a sparse model that mitigates the problem of joint learning from sensor
and social media data aiming to infer BMI category and “BMI Trend” attributes.

Suppose that there is a set of N exclusively labeled data samples, S ≥ 2 data sources
(modalities), and G ≥ 1 categories of the inference attribute. We divide the dataset into T
tasks, where each task t is represented by the unique combination of available data sources
for each attribute category. The number of features of task t is denoted as Dt; the number of
data samples of task t is denoted as Nt, and the number of different existing combinations of
sources is denoted as T̂ (so that T = T̂ ×G). Formally, each of the T tasks can be defined
as a set of pairs (jth data sample xtj and its corresponding label ytj):

t = {(xtj , ytj) | j = 1...Nt, xtj ∈ RDt , ytj ∈ {−1; 1}}10.

The prediction for jth data sample of task t is given by the linear model:

ft(x
t
j ; w

t) = xtᵀj wt,
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Table 4.6: Adopted notations

Notation Description

N Number of exclusively labeled data samples

S(≥ 2) Number of data sources (data modalities)

G(≥ 1) Number of inference attribute categories (for BMI category, G = 8; for
“BMI Trend”, G = 1)

g Inference attribute category (class). For example, “Obese” or “Normal” in
case of BMI category attribute.

T Number of multi-task learning Tasks

t A multi-task learning Task

Dt Dimensionality (feature vector dimension) of the task t

Dmax Maximum possible dimensionality of a task

Nt Number of data samples of the task t

T̂ Number of different existing combinations of sources

ft(x
t
j ; w

t) Linear prediction model for the jth data sample of task t

wt ∈ RDt Model parameter vector of task t

W All model parameters, denoted as linear mapping block matrix

Γ(W) Objective function

Ψ(X,W,Y) Loss function

Υ(W) Sparsity regularizer

Ω(W) Inter-category smoothness regularizer

ρ(s, f) Index function that denotes all the model parameters of the fth feature
from the sth source

ξ(t, g) Index function that picks up the model parameter (wt
g+1), which corre-

sponds to the attribute category g + 1 (adjacent to g)
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where wt ∈ RDt is the model parameter vector of task t. In case of multi-attribute inference,
the prediction for jth data sample of task t is given by:

fCDt (x
t∈CDt
j ) = arg max ft

t∈CDt
(xtj ; w

t),

where CDt is the set of Dt-dimensional11 tasks. All model parameters are denoted as the
linear mapping block matrix W:

W = (w1ᵀ,w2ᵀ, ...,wTᵀ) ∈ RDmax × T .

The optimal W can be found by solving the following optimization problem:

arg min
W

Ψ(X,W,Y) + λΥ(W), (4.1)

where Ψ(X,W,Y) is the loss function, Υ(W) is the sparsity regularizer that selects the
discriminant features to prevent high data dimensionality [98, 4], and λ controls the group
sparsity.

The loss function Ψ(X,W,Y) term can be replaced by a convex smooth loss function. In
this work, we adopt the logistic loss:

Ψ(X,W,Y) =
1

T

T∑
t=1

1

Nt

Nt∑
i=1

log(1 + e−y
t
ift(x

t
i;w

t)). (4.2)

To incorporate feature selection into the objective [98], we define Υ(W) as:

Υ(W) =

S∑
s=1

Fs∑
f=1

∥∥wρ(s,f)

∥∥ , (4.3)

where Fs is the sth source feature vector dimension, and ρ(s, f) is the index function that
denotes all the model parameters of the fth feature from the sth source. The Υ term is the
`2,1 norm [153], which leads to a sparse solution (controlled by λ ≥ 0) via constraining all
models that involve source s to share a common set of features.

11Each inference attribute category g corresponds to kg ≤ 1 tasks of dimension Dt.
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Modeling Inter-Category Smoothness

The above optimization problem treats all prediction attribute categories equally, while in
real world scenario (i.e. detection of the user’s BMI category), the attribute categories are
often inter-related. For example, the adjacent BMI categories “Obese I” and “Obese II” could
be similar to each other, since users from these BMI groups may follow similar lifestyles.
To incorporate such relatedness, we additionally regularize the model by “Inter-Category
Smoothness” term, which constrains model parameters of the adjacent attribute categories
to be close to each other:

Ω(W) =
T̂∑
t=1

∑
g∈CDt

κg,ξ(t,g)

∥∥∥wt
g −wt

ξ(t,g)

∥∥∥2 , (4.4)

where ξ(t, g) is the index function that picks up the model parameter (wt
g+1), which corre-

sponds to the attribute category g + 1 (adjacent to g) from the combination of data sources
CDt . The coefficient κg,ξ(t,g) is the pre-defined weight of the adjacent categories’ relationship.
In our study, we did not incorporate weighting into category inter-relatedness chain, due to
the lack of prior knowledge:

κg,ξ(t,g) =

1 g = 1...G− 1;

0 g = G.
.

However, in the cases when such knowledge is available [154, 4], the weighting can be
naturally introduced.

The final optimization framework that integrates data from multiple social networks and
wearable sensors, incorporates feature selection, and consider inter-category relationship, is
defined as follows:

Γ(W) = arg min
W

Ψ(X,W,Y) + λΥ(W) + µΩ(W), (4.5)

where λ ≥ 0 and µ ≥ 0 are the model parameters that could be obtained, for example, by
performing a grid search.

Optimization

The objective function Γ(W) is not smooth, since it consists of smooth terms (Ψ, Ω) and
non-smooth term (Υ). This means that the conventional optimization approaches, such as
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Gradient Decent, are not directly applicable in our case. Inspired by the fast convergence
rate of the Nesterov’s [98], we reformulate the non-smooth problem from Eq. (4.5) as:

f(W) = arg min
W∈Z

Ψ(X,W,Y) + µΩ(W)

s.t. Z =
{

W | ‖W‖2,1 ≤ z
}
, (4.6)

where z ≥ 0 is the radius of the `2,1-ball, and there is a one-to-one correspondence between
λ and z (proof is given in Liu et al. [98] Sec. 4.2).

In Nesterov’s method, the solution on each step (Wi+1) is computed as a “gradient” of a
search point Si:

Wi+1 = arg min
W

Mγi,Si(W),

Mγi,Si(W) = f(Si) + 〈∇f(Si),W − Si〉+
γi
2
||W − Si||2,

where Si is computed from the past solutions:

Si = Wi − αi(Wi −Wi−1).

where αi is the combination coefficient, and γi is the appropriate step size for Si (can be
determined by line search according to Armijo-Goldstein rule). The detailed description of
the Nesterov’s optimization approach can be found in previous works [98, 182, 4].

Computational Time Complexity Analysis

Since Ψ(X,W,Y), it costs O(DmaxN)) floating point operations (flops) for evaluating the
function value and gradient of the objective function in Equation 4.6 at each iteration [98],
where Dmax and N are maximum possible dimensionality of the task and number of data
samples, respectively. At the same time, it was shown [98] that the Euclidean projection,
which is necessary for Nesterov’s optimization, can be computed in a time of O(NT ), where
T is the total number of multi-task learning “tasks”. Considering that Nesterov’s approach
requires O( 1√

ε
) iterations for achieving an accuracy of ε [107], the overall time complexity is

O( 1√
ε
(DmaxN +NT )).
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On data balancing

To tackle the data imbalance problem at the training stage, we randomly and uniformly
selected equal number of negative and positive samples for each binary classification task. In
other words, to train task t (where tth feature dimension is Dt) we used all its corresponding
positive data samples and the same number of uniformly sampled negative data samples,
which were taken from other Dt-dimensional tasks.

4.2.3 Evaluation

In this section, we present the personal wellness profiling evaluation results to answer our-
proposed research questions. First, we compare performance of our proposed framework
for cases when it was trained based on different data sources and its combinations, which
helps to answer RQ2. Second, we perform evaluation against baselines, to respond RQ1
and RQ3.

Evaluation Metrics

We explicitly evaluate the performance of our proposed M2WP framework12 by solving
the problem of individual wellness profiling. Specifically, we present the inference results of
two personal wellness attributes: BMI category (eight attribute classes) and “BMI Trend”
(binary classification).

The distribution of users among different BMI Categories and “BMI Trends” is presented
in Figure 3.5. It can be seen that users are quite well distributed in all BMI categories.
The highest percent of users (38%) belong to “Normal” BMI category, and the smallest
percent of users (3%) belong to “Moderate Thinness” BMI group. The above suggests that
there is enough data samples to train a supervised model for BMI category classification
task, but the evaluation must be conducted on each BMI category separately to avoid
the imbalanced datasets evaluation problem [54]. To avoid the prevalence of popular BMI
categories in evaluation, we use “Macro-Recall” (RMac), “Macro-Precision” (PMac), and
“Macro-F1” (F1,Mac) metrics, which are the averaged “Precision”, “Recall”, and “F1” measures
across all categories.

Evaluation Against Individual Data Sources and Source Combinations

To study the corresponding performance of individual data sources and its combinations, we
evaluated M2WP trained on different data source permutations. The Mobility and Venue

12α = 0.1, µ = 0.1, κg,ξ(t,g) =

{
1 g = 1...G− 1;

0 g = G.
.
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Table 4.7: Evaluation of the M2WP framework trained on independent data sources and
its combinations. Evaluation metrics: Macro Precision, Macro Recall, Macro F1

Data Source Combination
BMI category prediction

RMac/PMac F1,Mac

Visual 0.049/0.188 0.077

Venue Semantics & Mobility 0.194/0.107 0.137

Sensors 0.153/0.158 0.155

Textual 0.229/0.146 0.178

Visual + Sensors 0.174/0.201 0.186

Visual + Text 0.126/0.245 0.166

Visual + Venue Semantics & Mobility 0.161/0.154 0.157

Text + Venue Semantics & Mobility 0.160/0.204 0.179

Sensors + Venue Semantics & Mobility 0.163/0.233 0.191

Sensors + Text 0.148/0.270 0.191

Visual + Text + Venue Semantics & Mobility 0.126/0.233 0.163

Sensors + Text + Visual 0.137/0.207 0.164

Sensors + Text + Venue Semantics & Mobility 0.182/0.236 0.205

Sensors + Venue Semantics & Mobility + Visual 0.180/0.283 0.221

All Data Sources 0.214/0.292 0.246

Semantics data representations were treated as one data source, namely, “Venue Semantics &
Mobility”, since both of them were extracted from Foursquare check-ins data. It also should
be noted that we did not evaluate the “BMI Trend” prediction performance on independent
sources since there are only two users in the test set, who have contributed data in all
modalities and have been labeled with the “BMI Trend” attribute.

First, we examine the contribution of different data sources towards user profile learning and
source integration ability. An interesting observation comes from the data source combination
results (see Table 4.7), where the combinations “Sensors + Text” and “Sensors + Venue
Semantics & Mobility” return the best performance and seem to be the most powerful
among other bi-source combinations. More impressive results can be gained from triplet
combinations, where the combination “Visual + Sensors + Venue Semantics & Mobility”
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perform the best. Based on these results, we can answer the research question RQ113 by
concluding that the Sensor data is of crucial importance for individual wellness profile learning
since it is the only data source included in all best-performing data source combinations.
This observation can also be interpreted by the ability of sensor data to represent users’
actual physical condition, which is directly related to users’ BMI category and “BMI Trend”.

Let’s now describe the single-source evaluation results (Table 4.7). It is interesting to note
that in the case of learning from independent data sources for the BMI category inference
task, our framework trained on Text modality performs the best, while those trained on
Sensors and Venue Semantics & Mobility data ranks 2nd and 3rd place, respectively. First
of all, the superiority of Text data over other modalities can be explained by its quantitative
dominance (see Table 3.1). At the same time, the Sensor data holds the 2nd position, which
again highlights its importance. Finally, being trained on visual data, M2WP performs the
worst among all other data sources, which is consistent with current data source combination
results. However, it does not conform well with demographic profiling results (Section 4.1.2),
where Visual data was essential for Age and Gender inference. One possible explanation
of the Visual data poor performance is the high level of noise in users’ Instagram photos.
At the same time, the differences with the demographic profiling can be interpreted by
the generality of ImageNet image concepts [44] that could be useful for the general task
of demographic attributes inference [54], but less effective to the more narrow problem of
individual wellness attributes inference. The last observation can also be explained by the
results obtained in Buraya et al. [28], where visual data was observed to play an auxiliary
role in the task of relationship status prediction. In conclusion, we would like to highlight
and suggest further usage of Text and Sensor data sources as the strongest contributors
towards individual wellness profile learning.

Evaluation Against Baselines

To compare M2WP framework against state-of-the-art user profiling approaches and answer
the research questions (2) and (3), we evaluate it against the following baselines14:

• RandomForest — strong baseline for the user profile learning [54]. We combined
features by applying an early fusion strategy and filled in the missing values by NMF.
The number of trees was selected based on 10-fold cross validation and equals to 105

and 25 for the “BMI category” and “BMI Trend” inference, respectively.

• aMTFL2 [98] — the `2,1 norm regularized multi-task learning with the least squares

13What is the contribution of sensor data towards BMI category and “BMI Trend” inference?
14We note that we did not include baselines that require prior knowledge for model guidance [4, 154] due to

the unavailability of such knowledge. It also worth noting that the inter-category relationship regularization
(Ω) is not applicable to “BMI Trend” classification since it is a binary personal wellness attribute.
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Table 4.8: Evaluation of theM2WP framework trained on all data sources against baselines.
Evaluation metrics: Macro Precision, Macro Recall, Macro F1

Method
BMI category “BMI Trend”

RMac/PMac F1,Mac RMac/PMac F1,Mac

MSESHC [54] 0.141/0.145 0.142 0.634/0.655 0.644

Random Forest 0.135/0.226 0.169 0.333/0.863 0.480

iMSF [182] 0.171/0.174 0.172 0.649/0.649 0.649

aMTFL2 [98] 0.162/0.215 0.184 0.700/0.722 0.710

TweetF it 0.222/0.202 0.211 0.705/0.732 0.718

M2WP 0.221/0.229 0.225 Ω is not applicable

Statistical Analysis

Weighted Cohen’s Kappa κw = 0.234, p < 0.01 κw = 0.368, p < 0.05

lost and α = 0.5.

• iMSF [182] — the sparse `2,1 norm regularized multi-source multi-task learning, with
α = 0.4;

• MSESHC — weighted ensemble proposed in [54]. The modality weights s were
learned by Stochastic Hill Climbing (SHC): s : {0.75, 0.2, 0.25, 0.45, 0.2, 0.3, 0.45, 0.2};
for venue categories, image concepts, behavioral text, LDA 50 text, sport categories,
sensors freq. bins, workout statistics, and mobility features, respectively.

• TweetFit [51] — multi-source multi-task learning framework “TweetFit” (equiva-
lent to M2WP framework, trained without inter-category relatedness regularization
(Equation 4.1)).

• M2WP — our proposed framework trained on all data sources (Eq. 4.5), where

α = 0.1, µ = 0.1, κg,ξ(t,g) =

1 g = 1...G− 1;

0 g = G.
.

The evaluation results are presented in Table 4.8. One can notice that the results achieved
by M2WP are higher as compared to all the baselines (Table 4.8), which enables us to
give a positive answer to research question RQ115. Specifically, we conclude that it is
possible to improve the individual wellness profiling performance by integrating multiple
social media sources and sensor data. Moreover, we note that the incorporation of inter-

15Is it possible to improve the performance of BMI category and “BMI Trend” inference by fusing multiple
social media and sensor data?
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category smoothness (Ω) into model further improves the performance, as compared to the
model without inter-category smoothness regularization (“TweetF it”), which gives positive
response to the research question RQ316. The possible reason is thatM2WP considers
inter-category relatedness for adjacent BMI categories, which constrains the model parameters
of the corresponding adjacent BMI categories to be “close” to each other. Consequently,
similar users are treated similarly, which allows for increasing the inference performance.
At last, M2WP outperforms other state-of-the-art approaches from the multi-task learning
family as well as non-linear baselines, such as Random Forest and MSESHC [54]. This result
demonstrates the framework’s ability to integrate data from wearable sensors and social
media for wellness profile learning.

Statistical Analysis

To evaluate the performance of M2WP from the statistical point of view, we utilize κw
to quantify the level of agreement between two raters: 1) M2WP framework and 2) BMI
ground truth labels obtained from users’ Endomondo page monitoring (see Section 3.1 for
details on ground truth collection). For the case of “Fitness Trend” classification (binary
classification), the weight matrix W was assigned as a unit matrix (all elements are 1s). For
the task of BMI category classification (multi-class classification), values in W were assigned
according to their squared distance from perfect agreement [27]. We also utilized p-value
test (see Section 6.2.2) to evaluate the significance level of the computed κw statistic.

Statistical analysis results are presented in Table 4.8. From the Table, it can be seen that
the value of κw calculated for BMI classification belongs to the “Fair” level of agreement
with ground truth labels (see Table 7.2) [91]. The fair agreement can be explained by the
skewness of the BMI distribution in our dataset. The obtained κw = 0.234, however, reveals
that the agreement between ground truth and prediction results is statistically significant
(with p < 0.01) and encourages further research in this direction.

According to Landi’s agreement categorization schema, in the case of “BMI Trend” clas-
sification, the obtained κw = 0.368 lays in the border of between “Fair” and “Moderate”
agreement categories [91] with the significance level of p < 0.05. Such results demonstrate the
high potential of M2WP regarding wellness-related applications and suggest its utilization
in future works.

16Is it possible to improve the performance of BMI category and “BMI Trend” inference by incorporating
inter-category relatedness into the learning process?
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Error Analysis

From the previous section, it can be seen thatM2WP framework can achieve better prediction
performance as compared to different data source combinations and other user profiling
baselines. However, its current performance may not be sufficient for its usage in real-world
scenario. To understand the reasons behind the low BMI category prediction performance, we
present in Table 4.9 the evaluation results of M2WP framework trained on all data sources
with respect to each BMI category. We use Precision, Recall, and the F1 as evaluation
metrics and color different BMI performance levels as follows: green — good performance;
blue — reasonable performance; brown — lower performance; red — low performance.

From the Table, it can be seen that two BMI categories (Normal, Pre-Obese) can be more
accurately predicted as compared to the rest of categories. The higher performance of these
two categories prediction can be attributed by the large number of samples in these categories,
which increases classifiers’ generalization ability. Accurate detection of Pre-Obese category
is of crucial importance in public wellness applications since it helps to find social media
users with “obesity risk”. This allows us to offer more information support and assistance to
such users, before they may be shifted to other obesity groups.

Another interesting observation comes from the BMI categories with comparably “lower
performance” (brown color) that all represent intermediate levels of either obesity or thin-
ness. It suggests that the neighboring wellness categories inside one wellness type of
overweight/underweight are not always easily separatable in the social media space. This can
be explained by the similar online behavior of users with similar wellness type. Such lower
prediction performance also inspires us to develop new and better social media-separatable
obesity categorization schemes in our future works.

Last but not least, we would like to highlight the comparably good performance of Severe
Thinness category and poor performance of Obese III category. Even though both categories
are extreme cases, the Severe Thinness category is often common among certain categories
of well-trained amateurs and sportsmen [103]. This implies that many users that belong to
Severe Thinness category can be easier distinguished from others by the way they perform
their workouts. On the contrary, Obese III tends to have very few samples (as users may
not want to reveal their severe obesity status to public) and users in such category behave
similar to other obese cases (i.e. Obese I, Obese II). They are, thus, more challenging to
classify.

Feature Importance Analysis

In Section 4.2.3, we’ve discussed the contribution of each data source and source combination
towards BMI category inference. However, to boost the prediction performance, it is often
important to know which particular feature groups are useful for predicting different BMI
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Table 4.9: Performance of the M2WP framework trained on all data sources with respect
to each BMI category. Evaluation metrics: Precision, Recall, F1

BMI Category % in Dataset Precision Recall F-Measure

Severe Thinness 8% 0.333 0.25 0.286

Moderate Thinness 3% 0.167 0.2 0.182

Mild Thinness 9% 0.222 0.138 0.17

Normal 38% 0.333 0.543 0.413

Pre-Obese 18% 0.371 0.277 0.317

Obese I 13% 0.125 0.176 0.146

Obese II 6% 0.182 0.111 0.138

Obese III 5% 0.095 0.082 0.088

categories. To gain such understanding, in this section, we perform feature importance
analysis by eliminating features in two steps:

• Correlation filtering: For each feature, we computed its linear correlation with every
other feature. We kept the feature with the largest number of correlated features and
filtered out all the correlated features. This procedure was repeated until there are no
more features with correlation higher than the threshold of σ = 0.2.

• Backward feature elimination: Each feature elimination iteration was performed
as follows: first, we trained binaryM2WP 17 for each BMI category on k input features;
second, we removed one input feature at a time and trained M2WP for each BMI
category on k − 1 input features k times; and third, we removed the input feature
whose removal has produced the smallest increase in the error rate. The total number
of feature elimination iterations was: D ∗ (D + 1) ∗G, where D = 230 and G = 8 are
respectively the data dimensionality after correlation filtering and the number of BMI
categories.

Table 4.10 describes the usage frequency of different feature types for predicting the BMI
categories after the feature elimination procedure. Such frequency helps to gain an insight
into the feature importance for predicting each BMI category. In other words, the listed
feature types are the minimal subset of features that perform the prediction of every BMI
category with the lowest error rate. The most frequently used feature type is colored in red,
while the feature types that are used by all the BMI inference models are colored in blue.

17where α = 0.1, µ = 0, κg,ξ(t,g) = 0; g = 1...G;
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First, it is noted that all the proposed feature types were utilized by the model for individual
wellness profiling. This is consistent with our source combination evaluation results and
highlights the necessity of using multi-source multi-modal data for the task of individual
wellness profiling.

Second, from Table 4.10, it can be seen that frequency domain features (Furrier Transform-
based features extracted from sequential workout data) and workout statistics features
are of crucial importance in predicting all BMI categories, while the workout semantics
features (distribution over exercise types) are weak indicators of one’s wellness profile. The
first observation conforms well with our initial assumptions and, once again, highlights the
importance of sequential sensor data for wellness profiling. On the contrary, latter observation
suggests that the types of users’ workouts are indeed not very useful for BMI prediction,
which also limits the usage of exercise tracking platforms that just provide the workout
description without the actual sensor measurement data sequences (i.e. MyFitnessPal,
Fitocracy) [174, 85, 122]. The above can be explained by the strong relation of sensor
measurements (intensity, speed, heart rate) to users’ actual health status, which may not be
directly related to an exercise type.

Third, we would like to highlight the importance of temporal, and venue semantics features,
which were widely used by all the prediction models. Such observation is consistent with our
source combination analysis results (see Section 4.2.3) as well as correlation analysis results
(see Section 6.3). The importance of temporal and venue semantics data was also mentioned
in previous studies [116, 54, 105] and can be explained by the major difference between
people from different BMI groups in terms of location preferences and time schedules.

Finally, we would like to bring to attention the infrequent usage of text-based features, which
could be due to the low representativeness of textual data itself as compared to multi-modal
data [28]. Another possible explanation is the high noise level in Twitter [142].

4.3 Summary

In this chapter, we presented two experimental studies on joint individual wellness profile
learning from sensor and social media data. To build a comprehensive individual user profile,
we first trained an efficient ensemble to predict users’ age and gender based on data from
three social networks. We then proposed the M2WP framework to predict users’ BMI
category and “BMI Trend” based on data from multiple social networks and wearable sensors.
The performance of the framework was enhanced by collective data source fusion strategy,
the introduction of sparsity into data representations, and incorporation of the novel idea of
a multi-source multi-task learning via efficient inter-category smoothness regularization. To
demonstrate the advance of our proposed individual wellness profiling solutions over other
state-of-the-art baselines as well as gain deeper insight into wellness profiling performance,
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Table 4.10: Usage frequency of different feature types for predicting BMI categories

Feature type S. Th. M. Th. Md. Th. Nrm. P-Ob. Ob. I Ob. II Ob. III

Latent topics 2 5 0 0 1 2 4 1

Lexicon 4 3 3 1 0 2 1 0

Writing style 2 1 1 1 0 2 1 3

Image con. 25 5 4 1 3 7 9 4

Venue sem. 19 5 1 2 11 5 11 2

Mob. & Tmp. 3 4 3 1 2 4 4 2

Work. sem. 1 0 1 0 1 2 2 2

Freq. domain 15 8 19 10 18 17 25 13

Work. stat. 1 2 2 1 1 2 2 3

we conducted extensive quantitative evaluation, classification error analysis, and feature
importance analysis. Our experimental results demonstrate the crucial importance of joint
learning from multiple social media and sensor data for individual wellness profiling, which
encourages further research in this direction. The major contribution of this chapter is
the generic multi-source supervised learning framework that is able to learn from multiple
incomplete data sources while performing feature selection and inter-category regularization
on-the-fly.
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Chapter 5
Integrating Multi-Source Cross-Region Data For
Group User Profile Learning In Urban Mobility
Domain

In this chapter, we introduce our multi-source group user profiling approach and its Urban
Mobility application — venue category recommendation. We then overview the real-world
social multimedia analytics platform bBridge, which integrates all earlier proposed user
profiling techniques to bring real-time analytics to business and individual users.

5.1 Multi-Source Community Detection for Cross-Network
Recommendation

Group profiling aims at learning the collective behavior of users groups that are also known
as user communities in social media computing. An intuitive approach to perform user
profiling at a group level is to discover communities of users and then apply individual profile
learning approach (see Chapter 4) to capture information and behaviors of the community
members [185]. In other words, community detection often modeled as a two-stage framework
including community discovery problem and aggregation of members’ personal profiles. Group
user profiling is necessary for various applications including facility planning, marketing [131],
and personalized recommendation [185, 52, 53].

As we’ve mentioned in Section 2.2.3, there are two main approaches for evaluating group
profiling algorithms: explicit evaluation and implicit evaluation. Since there is no widely
accepted measure to quantify community detection results in the case of multi-source
community discovery, in this thesis we evaluate our proposed multi-source community
detection approach via its Urban Mobility application — Cross-Source Venue Category
Recommendation.

In an attempt to make sense of the overwhelming amount of multi-source data, various
recommender systems were designed to extract relevant information from individual users.
However, most of them utilize data from a single-source or of a single modality, while disre-
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garding the potential of cross-source multi-modal recommendation. Another aspect which
lacks research, and is worth exploring, is the role of personal and group knowledge integration
in cross-source multi-modal recommendation. It has been established in an earlier study that
effective recommendation can be achieved based on the combination of group and individual
knowledge [29]. While individual knowledge is useful for the incorporation of personal
experience [163], group knowledge helps to improve the recommendation diversity [79].

Aiming to bridge these two research gaps, in this section, we focus on the problem of cross-
source recommendation based on multi-view user community discovery. Specif-
ically, this chapter is devoted to the emerging topic of venue category recommenda-
tion/prediction [7, 52, 53, 165], where we recommend a ranked list of Foursquare venue
categories to users with accounts in three social networks, namely Twitter, Instagram, and
Foursquare [54]. By performing filtering based on venue categories of places around user’s
current location, our recommender system does not depend on any particular geographical
area. This means that it can be used for many Urban Mobility scenarios, such as tourist
route planning [112], facility arrangement [161], or interactive mobile assistance [53]. For
example, based on one’s venue category preferences, we could further recommend a particular
venue (i.e. Chinese Restaurant, Movie Theatre, etc.) near his/her current location, rather
than a similar place located far away, even if the venue located farther away may slightly
better fit his/her preferences. Last but not least, the venue category recommendation (but
not venue recommendation) also helps to overcome evaluation difficulty, which often arises
due to location datasets’ sparsity.

Despite its potential, we recognize the challenges of multi-source group user profiling in
Urban Mobility domain. One challenge is data integration. Multiple data sources often
describe distinct sides of users’ activities. For example, Twitter may casually reveal users’
daily life updates, while Instagram may uncover their visual preferences. At the same time,
social media content comes in many forms (modalities), such as text, images or videos, which
also exhibit different facets of users’ online experiences. Such multi-source multi-modal data
must be integrated into one community detection framework in a mutually-consistent fashion,
which is an open research problem. Another challenge pertains to group representation
learning. Group representation can be naturally expressed in the form of user communities,
which must be extracted from heterogeneous multi-source data. However, the detection of
such user communities from multi-source multi-modal data is not an easy task due to the
necessity of proper inter-source and intra-source relationship modeling.

Inspired by previous studies and the challenges above, we seek to address three research
questions. First, to support the assumptions behind this study, it is important to answer:
(RQ1) Does incorporation of group user profiling into recommendation boost
its performance? Second, even though the topic has been discussed with respect to some
problems, it is still unclear if: (RQ2) Inter-source relationship information enable
us to find better user communities. Finally, for further recommendation improvement,
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it is important to understand: (RQ3) What the contribution is of each data source
(modality) towards group user profiling and venue category recommendation.

To answer these research questions, we introduce a cross-domain recommender frame-
work C3R that automatically extracts and utilizes group user profile and user history to per-
form Cross-Source User Community-Based Collaborative venue category Recommendation.
Individual knowledge is obtained from user’s experience, which is modeled as the distribution
among venue categories that a user has visited in past. To incorporate group knowledge, we
detected cross-source user communities in a latent space, where the relationship between
users is modeled as a multi-layer graph. The community detection approach incorporates
inter-source relationships during the process of learning individual source representations
and preserves inter-source consistency at the stage of learning latent sources representation.
The inter-source relationship graph is computed automatically from the data and further
utilized via new graph-constrained regularization. The experimental results show that our
framework can achieve better recommendation performance in three geographical regions, as
compared to state-of-the-art baselines and different data source combinations.

5.1.1 Data Representation

In addition to the features described in Section 4.1.1, we extracted a 48-dimensional temporal
feature and 4 mobility features. It is known that online activity of social-media users is
tightly knit to temporal and mobility aspects [116], which makes it reasonable to incorporate
such data into community detection process. Intuitively, users with similar mobility patterns
(i.e. often co-located) and similar temporal patterns (i.e. often perform activities at similar
time intervals) may have similar interests and can form an interests-based community. Below,
we give a brief description of the mobility and temporal data features that we used to form
mobility and temporal layers of user relationship graph.

The mobility features were computed based on users’ areas of interest (AOIs) [131], which are
geographical regions of user’s high geo-location density (regardless the geo-location semantic
meaning, which could be a geo-located tweet, geo-located Instagram image, or Foursquare
check-in). AOIs were obtained by performing density-based clustering1 [143] over the geo
locations of each user and considering the convex hull of each cluster as a new AOI. ε was
computed by analyzing the average distance between neighbors in MinPts-distance graph
(MinPts = 3 was selected empirically) [47]. User’s AOIs represent his/her geographical
mobility patterns [116, 131] that can be related to user’s lifestyle and interests. We extracted
the following Mobility And Temporal features:

• Average number of posts during each of the 8 daytime durations, where each

1Most of NUS-MSS’s check-ins belong to three geographical regions (Singapore, New York, London), which
makes it possible to compute DBScan clusters for most of the NUS-MSS users
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time duration is 3 hours long. The temporal features were computed for each data
source with respect to weekday/weekend factor. In total, there were 8× 3× 2 = 48

temporal data dimensions computed. The temporal features indicate users’ temporal
online activity and related to their urban mobility [116].

• Number of areas of interest (AOI). This feature reflects the mobility side of user’s
physical activity. For example, users with the higher number of AOIs may have a
physically intense lifestyle. AOIs also represent users’ frequent areas of activity (i.e.
home, office, university/school) [131] and may indicate how far users are willing to
travel on a daily basis.

• Median size of user’s AOIs2, which indicates users’ mobility inside each AOI. The
feature is an indicator of users’ traveling habits inside their main activity areas.

• Normalized number of AOI outliers. The feature indicates how often users visit
places that are not located inside their AOI, which may show how often users deviate
from their regular mobility patterns.

• Median distance between AOIs. This feature reflects user’s mobility at intra-
city/inter-city/international level. Specifically, it shows how often and how far users
travel between their activity zones and can be useful to infer travel-related user
communities.

5.1.2 User Community Detection

Notations: To simplify the reading process, we summarize all defined notations in Table 5.1.

Distance Graph Construction

The first step in finding representative user groups is the modeling of users’ relationships
in the form of a graph so that dense subgraphs of such graph can be treated as user
communities. The graph can be constructed based on: (a) social connections between users
(i.e. follower/followee relationship) that are often hidden behind the privacy settings; or (b)
user generated content, where similarity between users is estimated as a distance between
data representations of users and each data source modeled as a layer in a multi-layer graph.
In our work, we adopt the graph construction based on UGC to avoid privacy concerns and
limitations in mining explicit user social relations. There are certain benefits of such graph
construction approach [49]. First, it does not suffer from the lack of information about users’
relationship, since the relations between users are simply modeled as distances between

2Where AOI size is defined as the median distance between the center of mass and all points inside AOI.
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Table 5.1: Notations summary

Symb. Description

vecu Distribution of the user u among items (venue categories) in u’s past

Cu Community of the user u

γ Parameter that controls personal aspect of rec-n

θ Parameter that controls group aspect of rec-n

N Number of users

M Number of data sources (graph layers)

Li Laplacian matrix of the i-th layer

Ui Eigendecomposition matrix of the i-th layer

L̂i Inter-layer relationship regularized Laplacian of the i-th layer

Ûi Inter-layer relationship regularized eigendecomposition matrix of the i-th layer

ˆLmod Sub-space regularized Laplacian matrix

WR Adjacency matrix of inter-layer similarity graph

k Parameter that controls the number of clusters

α Parameter that controls sub-space regularization

βi Parameter that controls inter-layer regularization for the layer i
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users based on UGC similarity. Second, it naturally solves the problem of cross-region
recommendation, where the condition for related users to be explicitly connected in social
networks is relaxed. For every graph node pair i and j, the corresponding distance was
computed as Heat kernel [18]:

Wi,j = e−
||xi−xj ||

2

σ ,

where ||xi − xj || is the Euclidean norm, and σ is parameter that could be found by i.e. grid
search.

Problem Formulation

One of the commonly used formulations of the community detection problem is its represen-
tation in a form of NCut formulation, which conditions the sum of graph edges’ weights in
each community to be minimized among all communities [150]. This simply means that all
communities are formed by users that are most “similar” to each other. Such a definition is
naturally applicable to our task of group representation learning based on users’ interests
and from multiple data sources. We thus adopt the NCut formulation in our study. The
NCut definition is given below:

NCut(C1, ..., Ck) =

k∑
i=1

W (Ci, Ci)

vol(Ci)
=

k∑
i=1

cut(Ci, Ci)

vol(Ci)
,

where vol(Ci) is the sum of weights of all edges attached to vertices in Ci.

However, the NCut problem is proven to be NP-hard [170]. Fortunately, there exists a
state-of-the-art approximation that is defined as a standard trace minimization (also known
as spectral clustering) [166]:

min
U∈Rn×k

tr(UᵀLsymU), s.t. UᵀU = I. (5.1)

By the Rayleigh-Ritz theorem, the solution of the problem in Equation (5.1) is given by the
first k eigenvectors of the normalized graph Laplacian Lsym = I −D−

1
2WD−

1
2 , where W is

adjacency matrix, and D is degree matrix [102]. The mapping of each user to a cluster can
be further obtained by i.e. K-Means clustering over the eigenvector space [166].
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Spectral Slustering on Multi-Layer Graph

The well-known disadvantages of early fusion and late fusion data aggregation strate-
gies [4, 154] encourage us to perform joint clustering from all social data sources (graph
layers) simultaneously. The final data representation (latent representation) must be con-
sistent with all graph layers so that clustering will not be biased towards individual data
sources/modalities. One way to keep the latent representation consistent to all layers of the
multi-layer graph is to apply regularization during the clustering process, which will keep
graph layers “close” to the target representation. A well-adopted approach for measuring
“closeness” between target latent space U and the space of each layer Ui is based on Grassman
Manifolds [76], where the projected distance between two spaces S1 and S2 on Grassman
Manifold is equal to [45]:

d2Proj(S1, S2) =
k∑
i=1

sin2 θi

= k −
k∑
i=1

cos2 θi

= k − tr(S1S1ᵀS2S2ᵀ)

=
1

2
(tr(S1S1

ᵀ) + tr(S2S2
ᵀ)− 2tr(S1S1

ᵀS2S2
ᵀ))

=
1

2
||S1S1ᵀ − S2S2ᵀ||2F ,

(5.2)

where ||A||F is the Frobenius norm [69] of the matrix A.

Since mappings S1S1ᵀ and S2S
ᵀ
2 preserve distinctness [45], we consider the projection distance

as a distance measure between subspaces. The distance between target subspace S and all
the other individual subspaces {Si}Mi=1 can thus be defined as the sum of squared projection
distances between S and all individual subspaces {Si}Mi=1 [45]:

d2Proj(S, {Si}Mi=1) =

M∑
i=1

d2Proj(S, Si)

= kM −
M∑
i=1

tr(SSᵀSiSi
ᵀ).

(5.3)

By utilizing the Equation (5.3), the Equation (5.1) can be extended to introduce the
subspace-regularized objective:
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min
U∈Rn×k

M∑
i=1

tr(UᵀLiU) + α(kM −
M∑
i=1

tr(UUᵀUiUi
ᵀ)),

s.t. Uᵀ U = I,

(5.4)

where α controls sub-space regularization. We can rearrange Equation (5.3) to present it in
a form of standard trace minimization problem:

min
U∈Rn×k

M∑
i=1

tr(UᵀLiU) + α(kM −
M∑
i=1

tr(UUᵀUiUi
ᵀ))

= min
U∈Rn×k

M∑
i=1

tr(UᵀLiU)− α
M∑
i=1

tr(UUᵀUiUi
ᵀ)

= min
U∈Rn×k

M∑
i=1

tr(UᵀLiU)− α
M∑
i=1

tr(UᵀUiUi
ᵀU)

= min
U∈Rn×k

tr
M∑
i=1

(UᵀLiU − αUᵀUiUi
ᵀU)

= min
U∈Rn×k

tr(Uᵀ
M∑
i=1

(LiU − αUiUiᵀU))

= min
U∈Rn×k

tr(Uᵀ
M∑
i=1

(Li − αUiUiᵀ)U),

(5.5)

which, by the Rayleigh-Ritz theorem [102], can be solved as the first k eigenvectors of the
modified Laplacian Lmod =

∑M
i=1(Li − αUiUi

ᵀ). The eigen decomposition of the matrix
Lmod is not in the scope of this thesis, but can be efficiently computed by well-known
algorithms [94].

Incorporating Inter-Layer Relationship

Even though the subspace-regularized spectral clustering approach performed well on syn-
thetic dataset [45], real world problems often require a consideration of inter-source rela-
tionship (similarity) during the learning process [154]. Such a requirement is caused by the
difference between data sources and the way they describe the users [53]. Specifically, for
particular applications some data sources may be more informative than others. For example,
Foursquare check-ins could be more useful for venue category recommendation than textual
posts, while text data is of crucial importance for demographic profiling (see Section 4.1.2).

Inspired by previous works [53, 154, 172] and based on our observations, we take a step
further in multi-source clustering by introducing a new model regularization schema that
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guides the clustering process based on predefined inter-layer relationship graph. Given the
multi-layer user relationship graph G, which is constructed as described in previous sections,
let’s assume that there exists a complete undirected inter-layer similarity graph R with the
adjacency matrix WR, where each value of the matrix wi,j represents the similarity between
i-th and j-th layer of G. While WR can be automatically computed from the data (see
Section 5.1.2 for details), we first describe our inter-layer regularized spectral clustering
approach.

Essentially, our goal is to regularize the conventional spectral clustering in such a way that the
representation of each layer Ûi would be computed with respect to the inter-layer similarities
wi,j , which are taken from adjacency matrix of the inter-layer relationship graph R. Let’s also
note that the approach in Equation (5.5) relies on pre-computed layers’ Laplacians {Li}Mi=1

and their spectral spaces {Ui}Mi=1. In our work, we apply the inter-layer regularization on
the process of computing the layers’ spectral spaces, so that the final multi-layer spectral
space is computed as in Equation (5.5). By using previously defined distance on Grassman
manifold, we define the new objective function for the i-th layer as follows:

min
Ûi∈Rn×k

tr(Ûi
ᵀ
LiÛi) + βi(kM −

M∑
j=1,j 6=i

wi,j tr(ÛiÛi
ᵀ
UjUj

ᵀ)),

s.t. Ûi
ᵀ
Ûi = I,

(5.6)

where Ûi
ᵀ
is the new spectral space of the i-th layer, βi — parameter that controls inter-layer

regularization for the layer i, {Uj}Mj=1 — spectral spaces of all layers after standard spectral
clustering, wi,j — similarity between layer i and layer j. After similar rearranging procedure
as in Equation (5.5), the problem in Equation (5.6) can be presented as a standard trace
minimization:

min
Ûi∈Rn×k

tr(Ûi
ᵀ
LiÛi) + βi(kM −

M∑
j=1,j 6=i

wi,j tr(ÛiÛi
ᵀ
UjUj

ᵀ))

= min
Ûi∈Rn×k

tr(Ûi
ᵀ
(Li − βi

M∑
j=1,j 6=i

wi,jUjUj
ᵀ)Ûi),

thus, by the Rayleigh-Ritz theorem, it can be solved as the first k eigenvectors of the
regularized Laplacian L̂i :

L̂i := Li − βi
M∑

j=1,j 6=i
wi,jUjUj

ᵀ.
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We now presented all necessary components to define our multi-source user community
detection approach with the following objective function:

min
U∈Rn×k

M∑
i=1

tr(UᵀL̂iU) + α(kM −
M∑
i=1

tr(UUᵀÛiÛi
ᵀ
))

= min
U∈Rn×k

tr(Uᵀ
M∑
i=1

(L̂i − αÛiÛi
ᵀ
)U),

s.t. Uᵀ U = I.

(5.7)

To make the clustering procedure clear, we present the pseudocode as shown in Algorithm 1.

From the pseudocode, it can be seen that optimization of the Equation (5.7) and further
clustering consists of four main steps: 1) Perform conventional spectral clustering on each
layer to obtain Li and Ui; 2) By incorporating inter-layer relationship graph R, perform
inter-layer relationship regularized spectral clustering on each layer to obtain L̂i and Ûi; 3)
Execute subspace-regularized spectral clustering on each layer to obtain ˆLmod and U ; 4)
Normalize U to obtain Unorm and execute the X-Means Clustering over it [124]3.

The value of the subspace regularization parameter α and the inter-layer regularization
parameters βi can be found by grid search. In next section, we outline the construction of
inter-layer similarity graph G.

Computing Inter-Layer Relationship

Intuitively, the inter-layer relationship graph R must represent the similarity between layers
in terms of clustering results, summarized for different values of k. We thus define the
similarity sim(w, q) between layers q and w as a normalized difference between N × N
clustering co-occurrence matrices Mq,k, Mw,k, in which each value mi,j is equal to 1 if user
i is assigned to the same cluster as user j in both layers w and q, and 0 otherwise. The
clustering co-occurrence matrices are obtained by performing single-layer spectral clustering
on each layer i (Ui space) and for different values of k (k = 2..K, where K =

√
N [72]). We

then take an average among relation values obtained for different k:

sim(w, q) =

(
K∑
k=2

1−
||Mw,k −Mq,k||√

N(N − 1)

)
/ K − 1. (5.8)

3X-Means clustering was selected due to its similarity to K-Means [72] clustering and the ability of
automatic inference of the number of clusters to detect
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Algorithm 1 C3R clustering

procedure Cluster({Wi}Mi=1, {βi}Mi=1, WR, k, α)
. {Wi}Mi=1 — N ×N weighted adjacency matrices of individual graph layers {Gi}Mi=1, WR

— adjacency matrix of inter-layer similarity graph, k — target number of clusters, {βi}Mi=1

— regularization parameters for each layer, α — parameter for subspace regularization

for each layer i
Compute Li and Ui for Gi [166]

. Li — the normalized Laplacian matrix of the layer i, Ui — subspace representation of
the layer i, Gi — ith layer graph

Compute L̂i := Li − βi
∑M

j=1,j 6=iwi,jUjUj
ᵀ

. L̂i — the regularized Laplacian matrix of ith layer
Compute Ûi ∈ RN×k

. Ûi — the regularized subspace representation of the layer i that is the matrix of first k
eigenvectors û1, ..., ûk of L̂i[94]

end for
Compute ˆLmod =

∑M
i=1(L̂i − αÛiÛi

ᵀ
)

. ˆLmod — the modified Laplacian matrix [45]
Compute U ∈ RN×k. Normalize rows of U to get Unorm.

. U — the matrix of first k eigenvectors [94] of ˆLmod
yj ← j-th row of Unorm. . yj ∈ Rk(j = 1, ..., N)
Cluster yj in Rk into C1, ..., Ck using X-Means [124].

return {C}ki=1

. C1, ..., Ck cluster assignment
end procedure
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The above formulation is the modified and normalized version of the Partition Difference
measurement [95]. Being averaged over different values of k, it is able to serve as a reliable
indicator of the similarity between different social networks in terms of clustering results. We
explicitly would like to mention that our-proposed inter-layer relationship graph construction
approach is purely automated and does not require any expert knowledge. This suggests its
further usage for other graph-constraint unsupervised learning approaches.

5.1.3 Computational Time Complexity Analysis

To analyze the complexity of C3R clustering, we need to estimate the complexity of each
step of Algorithm 1. If N is the number of users, M the number of data sources (graph
layers), and k is the number of first eigenvectors to compute, C3R time complexity can be
estimated as O(N2(M2k +MN + k2)). Below, we discuss the complexity in more details.

First, each Laplacian (Li) and eigenvector matrix (Ui) computational complexity is O(N3),
which sums up to O(MN3) for computing them for all graph layers. The computation of each
L̂i costs O(MN2k), which gives the computational complexity of O(M2N2k). The total cost
of Ûi computation is O(MN3). ˆLmod can be computed in O(MN2k) time. The computation
of matrix U takes O(N3) time, while the complexity of X-Means clustering in space Unorm is
O(N2k2) [124]. The total C3R time complexity, thus, is O(M2N2k)+O(MN3)+O(N2k2) =

O(N2(M2k +MN + k2)), where M,k � N .

5.1.4 Evaluation

Cross-Source Recommendation as Application of Group User Profiling

Strategic decision making is known to be influenced by external factors like personal ex-
periences and public opinions [8]. The public opinion can be expressed by explicit and
implicit user communities that are formed based on social relations and their data similarity,
respectively. This phenomenon can be leveraged to enhance recommendation performance.
To do so, we perform venue category recommendation based on both personal and group
knowledge, which naturally models the impact of society on an individual’s behavior during
the selection of a new place to go. Formally, our proposed C3R recommendation approach is
defined as follows:

rec(u) = sort

(
γ · vecu + θ

∑
v∈Cu vecv

|Cu|

)
(5.9)

where vecu is the distribution of the user u among items (venue categories) in u’s past,
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and
∑

v∈Cu vecv

|Cu|
is the normalized (by the number of members in user community Cu)

distribution of all community members among venue categories, γ controls the personal
aspect of recommendation, while θ regulates the group experience impact of the user
community Cu. Besides the benefits described earlier, incorporation of user communities
reduces the search space during the recommendation process and provides better candidates
to compare for further collaborative filtering [144]. While personal information like users’
previous activity is often available, in most of the cases user communities are not explicitly
indicated, which can be solved by our proposed multi-source community detection approach
C3R.

Evaluation Measures

To evaluate our framework against competing systems, we chose the following two widely
accepted measures:

Normalized Discounted Cumulative Gain (NDCG) measure, which is defined as:

NDCG@p =
DCG@p

IDCG@p
,DCG@p =

p∑
i=1

2reli

log2(i+ 1)
, reli =

Cati
NCat

,

where IDCG is the maximum possible (Ideal) DCG for a given set of queries, reli is the
graded relevance of the result at position i, Cati is number of times user checked-in at venue
of category i, and NCat = 764 is the total number of Foursquare venue categories in the
dataset.

Average Precision (AP ), which is defined as:

AP@p =
1∑p
i=1 ri

p∑
i=1

ri

(∑i
j=1 rj

i

)
, ri =

1, item i is relevant

0, otherwise.

Baselines Description

In this section, we briefly describe competing recommendation approaches, and different
C3R modifications.

Community Detection Baselines:
In four C3R modifications below, recommendation was performed according to Equation 5.9,
and community detection was performed over all 1952 features.
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C3R — our proposed C3R recommendation approach (Equation 5.9), where user communities
are detected as minimization of Equation (5.7) via the Algorithm 1 from multi-layer user
relationship distance graph graph (σtw = 2.01, σfsq = 1.62, σinst = 0.28, σtmp = 1.00, σmob =

0.66). The estimated parameters are: k = 10, α = 0.922, βi = 1 (i = 1..M), γ = 1, θ =

0.248, which are inferred by SHCR search [54]. The adjacency matrixWR of the automatically
constructed inter-layer similarity graph is given below:

WR =



txt loc vis tmp mob

txt 1 0.632 0.621 0.643 0.561

loc 0.632 1 0.614 0.631 0.570

vis 0.621 0.614 1 0.621 0.551

tmp 0.643 0.631 0.621 1 0.560

mob 0.561 0.570 0.551 0.560 1



C3R−L̂ — C3R recommendation without inter-layer regularization (βi = 0, i = 1..M), where
k = 10, α = 0.521, γ = 1, θ = 0.1 are obtained by SHCR [54].

C3R−L̂−Lmod
— C3R recommendation without inter-layer regularization (βi = 0, i = 1..M)

and sub-space regularization (α = 0), where k = 22, γ = 1, θ = 0.147 are obtained by
SHCR [54].

C3R−Comm — C3R recommendation without user community detection (all users are
considered to be in the same community).

C3R (DBScan) — C3R recommendation, where user communities are detected by Density-
Based clustering (DBScan) [143]. The DBScan’s ε = 0.9 and MinPts = 6 were obtained by
grid search.

C3R (X-Means) — C3R recommendation, where user communities are detected by X-
Means Clustering [124] (k = 4 was auto-detected by X-Means).

C3R (Hierarchical) — C3R recommendation, where user communities are detected by
Hierarchical Clustering. Parameter k = 10 and “single linkage” inter-cluster distance measure
were obtained by grid search.

Recommender System Baselines:
Popular (POP) — performs recommendation only based on user’s past experience (distri-
bution on user’s check-ins among 764 Location (Venue Category) features in past). To note,
it is the special case of C3R recommendation (Equation 5.9), where θ = 0.

PopularAll (POPAll) — performs recommendation based on aggregated experience of
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all users, which produces user-independent recommendation output (764 Venue Category
features were utilized).

Multi-Source Re-Ranking (MSRR) [53] — linearly combines recommendation results
from all data sources and determines source weights via Stochastic Hill Climbing With Ran-
dom Restart (SHCR) (See Farseev et al. [54] for details): wtw = 0.42, wfsq = 0.95, wisnt =

0.36, wtemp = 0.65, wmob = 0.02.

Nearest Neighbor Collaborative Filtering (CF) [3] — produces recommendation based
on top k = 20 (determined by SHCR) most similar users from the recommendation source
(Foursquare, in our case) using a similarity measure (in our case, Cosine similarity) over 764

Location (Venue Category) features.

Early Fusion (EF) [176] — fuses multi-source data into a single feature vector (of dimension
1952) and performs recommendation via CF.

Implicit Feedback-Enhanced Singular Value Decomposition (SVD++) [90] —
makes use of the “implicit feedback” information in factorization model (trained on 764

Location (Venue Category) features), where λ = 0.67, γ = 0.06, k = 277, iter = 55 are
obtained by SHCR [54].

Factorization Machines (FM) [138] — brings together the advantages of different
factorization-based models via efficient regularization. In our study, we trained FM based on
764 Location (Venue Category) features, utilized the MCMC optimization technique [138]
and the regression loss, where k = 30, iter = 140 are obtained by SHCR [54].

Comparing with Community Detection Baselines

To answer RQ24, we compare different C3R modifications, which include different variants
of our proposed community detection approach as well as other state-of-the-art clustering
approaches. The evaluation results are presented in Figure 5.1.

First, we note that the non-regularized version of the framework (C3R−L̂−Lmod) performs
the worst against its relatives and other clustering algorithms. This is due to the inability of
such non-regularized clustering to build a consistent latent representation, which does not
consider inter-network relationship and leads to poor recommendation performance. At the
same time, the inter-source regularized C3R framework beats all the baselines in all three
cities, which could not be achieved by its non-regularized versions (C3R−L̂−Lmod , C

3R−L̂,
C3R−Comm). The above observation suggests the importance of subspace regularization in
combination with inter-source regularization for balanced user-community detection and, as
a result, better recommendation performance. It also allows us to give a positive response
to RQ2.

4Does inter-source relationship information enable us to find better user communities?
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Figure 5.1: Evaluation of C3R framework based on different clustering algorithms in terms
of NDCG@p

Let us also outline the good performance of other clustering approaches, where the recom-
mendation based on X-Means clustering (C3R (X-Means)) performs slightly better than
other clustering baselines. The above is consistent with the previous study [52] and can be
explained by algorithm’s ability to automatically infer the parameter k (number of clusters),
which allows for finding more distinctive (regarding Bayesian Information Criterion) user
communities and, eventually, provide more relevant recommendation.

Comparing Data Source Combinations

To gain insight into the role of different data sources (modalities) in venue category rec-
ommendation and answer RQ35, we evaluate our framework trained on all data sources
(modalities) against different data source (modality) combinations. Due to space constraints,
in Figure 5.2 we do not present all feature combinations (31 different combinations), but
only show the combinations that include Temporal and Mobility features. For example, the
combination “Text” includes Textual, Temporal, and Mobility features, while the combination
“Text + Location (Venue Category)” includes Text, Location (Venue Category), Temporal,
and Mobility features.

It is not surprising that the recommendation purely based on venue category distribution
performs the best among all single-source baselines in all three cities [53]. The reason
is that the data from the target source (Foursquare) contains explicit knowledge about
the distribution of recommendation items in the training set, and thus can forecast the
distribution of items in the test set accurately. Bi-source combination results also provide for

5What the contribution is of each data source (modality) towards group user profiling and venue category
recommendation?
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Figure 5.2: Recommendation performance of C3R framework based on different data
source combinations in terms of NDCG@p

interesting observations. For example, the Location (Venue Category) + Text combination
achieves the best recommendation performance in London and New York regions, but not in
Singapore (where text from Twitter gives way to Instagram images). The possible reason is
the differences in daily social media usage patterns in different geographical regions: London
and New York users mainly post interest-related messages on Twitter, while Singapore users
(where Twitter is not widely used) upload pictures of their interests on Instagram (i.e. pictures
of food [105]). The above is also supported by the previous study [54], where image data plays
a crucial role for the task of multi-source demographic profiling in Singapore. Lastly, we also
notice that the combination of all data sources performs the best for all three geographical
regions, where the maximum recommendation performance is achieved in Singapore. This
could be possibly because of the fact that Singapore has the largest amount of available
multi-source data, in comparison with New York and London [54]. Summarizing the above,
we answer the RQ3 by highlighting the importance of venue category, temporal
and location-based data as a major contributor towards recommendation performance.
At the same time, depending on geographical region and users’ posting behavior, visual
data and textual data may impact differently, while the combination of all data
sources allows for achieving the best recommendation performance in most of the
cases.
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Figure 5.3: Evaluation of C3R framework against other recommendation approaches in
terms of NDCG@p

0 20 40 60 80 100
0.3

0.35

0.4

0.45

0.5

p

A
P

@
p

London

0 20 40 60 80 100
0.3

0.35

0.4

0.45

0.5

p

New York

0 20 40 60 80 100
0.3

0.35

0.4

0.45

0.5

p

Singapore

POP POPAll CF EF MSRR SVD++ FM C3R

Figure 5.4: Evaluation of C3R framework against other recommendation approaches in
terms of AP@p

Comparing with Recommender Systems Baselines

To answer RQ16, we evaluate C3R framework against other recommender systems. The
evaluation results are presented in Figure 5.3 and Figure 5.4.

First, an interesting observation is the poor performance of the EF approach, regarding
both AP and NDCG evaluation metrics, which, once again [53], suggests the necessity
of using proper data fusion approaches for multi-source learning. On the other hand,
the recommendation approach based on user’s past items distribution (POP) produces
comparably good recommendation output, especially for the small values of p. It means that
Foursquare users tend to re-visit venue categories that they have already visited in past,
which highlights the importance of individual knowledge for venue category recommendation

6Does incorporation of group user profiling into recommendation boost its performance?
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and allows POP for achieving high recommendation performance. At the same time, the
POPAll baseline (non-personalized popularity-based recommendation) outperforms FM and
EF approaches concerning NDCG metric, which suggests the usefulness of group knowledge
for recommendation purposes. Finally, it can be seen that the combination of individual and
group knowledge in C3R significantly outperforms other baselines in terms of both AP and
NDCG evaluation metrics. This confidently confirms the necessity of group knowledge for
cross-source recommendation and positively answers the RQ1.

Let us also highlight the weak performance of the factorization-based models. For example,
even after proper negative sampling [75], FM is not able to perform relevant recommendation
in the head of the recommendation list, which explains its poor performance in terms of
NDCG measure. At the same time, SVD++ fails to outperform others in terms of Precision,
which could be explained by the limited applicability of the “implicit feedback” concept to
the task of venue category recommendation. Specifically, the fact that some users did not
visit a venue of a particular category does not necessarily mean that they do not appreciate
such venue type. Alternatively, such behavior could be a result of the geographical [116] or
social [105] constraints. Another interesting observation is the advance of popularity-based
baseline (POP) over other recommendation approaches in New York region (regarding AP ).
The possible explanation is that Foursquare users often re-visit venues of the same category,
which means that their corresponding training and test sets significantly overlap in many
cases (regarding item distributions). The last is not typical for recommendation systems
and may lead to the sub-optimal performance.

On User Community Profiling

The key idea of our cross-source recommendation in Urban Mobility domain is the incorpora-
tion of group knowledge into recommendation via detecting relevant user communities from
multiple social multimedia data sources. The evaluation against the baselines indirectly shows
the ability of C3R framework to detect important user communities. To support our answer
to RQ2 and demonstrate the community detection performance explicitly, in Table 5.2,
we have listed the profiles of the 3 largest user communities detected in Singapore. User
profiles are constructed as a “bag-of-words” over textual, visual, and location data modalities.
From the table, it can be seen that most popular data representations (“words”) in all data
modalities are consistent with each other and represent distinct user communities. For
example, the user community “Com1” is represented by words: “device”, “launcher”, “android”;
visual concepts: “mouse”, “digital clock”, “hard disk”; and venue categories: “electronics
store”, “startup”, “technology building”. We thus named this community as “Gadgets”. The
distinctness of detected user communities allows C3R to perform collaborative filtering based
on those social media users, who are semantically “close” to the user of the recommendation
system, which helps to boost the recommendation performance. The inter-modal consistency
of the community profiles shows that C3R can perform balanced clustering on a multi-layer
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Table 5.2: User communities profiles

Community
Bag of Words for different modalities

Text Visual Location

(Com1) ‘Gadgets”
832 users

device, launcher,
android

mouse, digital
clock, hard disc

electronics store,
tech startup, tech-
nology building

(Com2) ‘Arts”
538 users

painting, land-
scape, reflection

obelisk, paint-
brush, pencil
box

arts & crafts store,
arts & entertain-
ment, museum

(Com3) “Food”
446 users

dining, coffee,
cooking

pineapple, mi-
crowave, frying
pan

italian restaurant,
pizzeria, macanese
restaurant

graph, which is achieved via inter-layer regularization. The overall results suggest the
applicability of the proposed techniques for a task of multi-source user community detection
and encourage further research along these directions.

As we mentioned earlier, one of the crucial steps in our frameworks’ pipeline is the integration
of the results obtained from the individual and group user profiling stages into social
multimedia analytics platform. The step includes deployment of data gathering approaches
together with user profiling models into a cloud environment, as well as their automatization
and presentation to consumers. To accomplish this task, in next section we introduce our
developed cloud-based social multimedia analytics platform called “bBridge”.

5.2 Real-World Application: bBridge Analytics Platform

The increasing amounts of published UGC provides opportunities as well as challenges
for its consumers — users and data analysts. At the user level, the biggest problem is
information filtering, due to the growing amount of irrelevant content, such as advertisement
and spam. At the data analytics level, data-preprocessing, fusion, and modeling pose the
greatest challenges to address. A comprehensive solution of these problems provides users
with meaningful social-multimedia insights at both the individual and group levels [49]. For
example, the group-level analytics can be utilized in Facilities Planning, Brand Monitoring,
Marketing, and Geo-Enabled Advertisement domains, while the personal analytics, can be
used for Personal Content Filtering and Interest-Based Recommendation.

Previously, we proposed the approaches to venue category recommendation via user com-
munity detection (see Section 5.1), and multi-source individual user profile learning (see
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Figure 5.5: Block diagram of the bBridge platform

Chapter 4). The adopted group user profiling technique can be directly applied to live
multi-source data. To perform user community profiling (automatic assignment of names and
descriptions to user communities), we exploited our earlier developed multi-source individual
user profiling [54] and the multi-modal topic modeling [167] techniques. Eventually, all
the above approaches were integrated into the Big Social Multimedia Analytics Platform
bBridge, which delivers the live stream analytics [83] to its users.

The overall data processing pipeline in bBridge is as follows: (a) the distributed cloud
crawlers harvest recently posted UGC from multiple social networks [49]; (b) the community
detection framework extracts user communities in a latent cross-social network space [45, 52];
(c) multi-source user profile learning [54] and multi-modal topic modeling [167] techniques
construct comprehensive profiles of each detected user community and prepare it for further
visualization; and (d) the stream analytics engine aggregates communities’ multimedia UGC
streams [11], which enables various T-SQL queries to be performed into live multimedia
data [13, 114]. To the best of our knowledge, the bBridge is one of the first online solutions
that offers Big Social Multimedia Analytics at both personal and group levels.

5.2.1 Platform Description

We now briefly describe the bBridge platform. The block diagram of the bBridge platform is
shown in Figure 5.5.

In the platform, the user communities and its’ corresponding profiles are re-computed every
12 hours, while the stream analytics and multi-source crawling are executed continuously. At
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any given time frame, the following steps are taken (the continuously executing operations
are marked with the “*”):

I. Multi-Source Distributed Crawling*: The crawling process consists of two steps: (a) a
set of active users who have recently posted tweets through the cross-linking functionality [54]
of multimedia social networks is collected; and (b) Twitter Stream APIs [164] are used to
perform tweets streaming with respect to specified geographical regions, so that cross-social
network account mapping can be performed when users publish tweets that contain posts
from other social networks (i.e. publish Instagram images on Twitter). By following the
described user identification approach, we continuously harvest the data from Twitter,
Instagram, Foursquare, and Facebook. At the current stage7, we continuously monitor about
170 thousand Twitter users from Singapore, which were active (post cross-linking tweets)
near Singapore region during the recent one month time frame.

II. Multi-Modal Feature Extraction: We represented data as follows: visual data
(Instagram and Twitter images) is represented in a form of image concept distribution [44];
location data (Foursquare check-ins) is represented in a form of distribution among venue
categories and mobility patterns [49, 54]; textual data (Twitter tweets, Instagram image
captions, and Foursquare check-in comments) is represented in a form of latent topics [167],
LIWC distribution [127] and writing style features [54]. The detailed description of the
adopted feature extraction processes is given in Section 4.1.1.

III. Multi-Source Community Detection: The user communities are detected via
regularized spectral clustering on a multi-layer graph, as described in Section 5.1. Each layer
in the graph is constructed based on UGC similarity between users, which is estimated as a
Heat distance between data representations in each social network (see Section 5.1.2).

IV. User Community Profiling: User Community Profiling is performed in three steps:
(a) individual user profile learning [49] is applied to each community member, which results
in a set of personal users’ attributes, such as Age, Gender, Occupation Industry, Education
Level, Income Level, Relationship Status, etc.; (b) the extracted attributes are summarized
among all community members for further visualization in a form of “Donut” diagrams (see
Figure 5.6).

V. Live Stream Analytics*: Except for sentiment analysis for every post [54], the
live stream analytics is performed in a form of T-SQL queries [13] into a real-time social
multimedia stream. bBridge adopts the Windows Azure Stream Analytics cloud service [11],
which allows for using various query constructions such as “Like/Not Like patterns”, “CASE
statements”, “Embedded procedures”, etc. Below, we give an example of the query that will
output distribution among extracted latent topics and content of all the multimedia posts
published from “Downtown” district during the last 30 seconds by the “Arts” community

7As on August 1st 2017
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Figure 5.6: The bBridge online GUI snapshot

with the “Positive” sentiment score:

SELECT Topics, Content FROM MultimediaStream

TIMESTAMP BY CreatedAt GROUP BY SLIDINGWINDOW(s, 30)

WHERE Sentiment=‘Positive’ AND Community=‘Arts’

AND Region=‘Downtown’

From the example, it can be seen that the aforementioned querying approach can be used to
query multimedia data at both global and local levels.

To take advantage of parallel processing, we have implemented bBridge platform as a multi-
role cloud service [12]. Each crawler runs as a separate Windows Azure worker role, which
enables us to harvest multiple social multimedia venues simultaneously. The community
detection and profiling modules are implemented as multi-instance Windows Azure worker
roles, so that it can be performed for different time frames at the same time. The stream
analytics module utilizes Azure Stream Analytics engine [11] that can perform complex
real-time queries [13] into the live social multimedia stream. All worker roles and stream
engine are synchronized via the Windows Azure Service Bus.

Using bBridge’s web GUI [55], the users can select one of the recently detected communities
in a specified geographical region. Based on the selected user community, the following
features are provided: (a) observe geo-activity of the community members; (b) discover hot
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multi-modal topics that were discussed by the community members; (c) view the distribution
of the community members among automatically inferred user attributes (such as age, gender,
occupation industry, education level, relationship status, and income level); and (d) perform
queries of different complexity into the live social multimedia stream, which is generated by
the community members.

A snapshot of the GUI is shown in Figure 5.6. The GUI shows the map of a Singapore region
and the opened visualization console for the “Arts” community. The map shows the polygons
that describe recent community members’ geo-activity; the left pane displays the hot topics,
discussed by the community members and the distribution of the community members among
the detected personal user’s attributes; while the right pane lists the recent cross-network
posts of the community members, which are filtered according to the specified query. bBridge
users can select different user communities, view visualization, specify real-time queries into
the community stream via the query UI control.

5.3 Summary

In this chapter, we presented a study on multi-source group profiling and its application in
Urban Mobility Domain — Cross-Source Venue Category Recommendation. The proposed
recommendation framework C3R utilizes both individual and group knowledge to solve a
task of venue category recommendation. Individual knowledge is modeled as the distribution
among venue categories that user has visited in past, while group knowledge is modeled
as the distribution of Foursquare venue categories among user community members. The
user communities are detected based on novel regularized spectral clustering approach
that is able to perform an efficient partitioning of multi-layer user relations graph. By
performing comprehensive evaluation against the state-of-the-art baselines and different data
source combinations, we demonstrated that our proposed user-community-empowered venue
category recommendation framework can achieve superior recommendation performance.

To show the applicability of our individual and group user profiling solutions to the real-world
scenario, we integrated all the earlier proposed techniques in cloud-based Big Data Platform
for Social Multimedia Analytics, called bBridge [55]. The platform automatically detects
and profiles meaningful user communities in a specified geographical region, followed by rich
analytics on communities’ multimedia streams. The system executes a community detection
approach that considers the ability of social networks to complement each other during the
process of latent representation learning, while the community profiling is implemented based
on our proposed multi-source individual user profiling techniques. The multi-source data
crawler deployed as a distributed cloud jobs. Overall, the bBridge platform integrates all the
above techniques to serve both business and personal objectives. The major contribution of
this chapter is generic multi-layer (multi-source) graph clustering approach that considers
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inter-source relationship during the clustering process.
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Chapter 6
User Profiling Analytics

In previous chapters, we proposed approaches for individual and group user profiling from
multiple social networks and wearable sensors. The performance of the methods was evaluated
by comparing with different state-of-the-art baselines from the corresponding application
domains. However, till now it is still not clear what the exact relationship is between different
data modalities and data sources towards individual and group user profile learning. To gain
insight into such an association, in this chapter we conduct statistical analysis of multi-source
user profiles.

6.1 Introduction

The growing amount of multi-modal user-generated content all over the Web inspired
new directions in different research domains. One such direction is user profile learning
from multiple social networks. The task is conventionally approached by utilizing various
supervised and unsupervised machine learning techniques aiming at individual and group
attributes inference. Most of the works towards multi-source user profile learning reported
better performance by utilizing multiple data sources (modalities), as compared to single-
source (single-modal) baselines [28, 51, 54, 153, 154]. However, the majority of them did not
provide a comprehensive explanation of the relation between different information queues
and the performance improvement.

At the same time, many groups from social science research community conducted a quali-
tative analysis of user-generated content. For example, there have been multiple research
attempts done on the understanding of the relation between social media and various aspects
of human wellness. Specifically, Culotta et al. [42] performed an analysis on Twitter data
aiming to predict US citizens’ health-related statistics such as obesity or teen pregnancy,
while Chou et al. [35] conducted a qualitative study on weight-related interactions of Twitter
and Facebook users. Mejova et al. [105] performed group obesity analysis based on data
from Foursquare, while Sharma et al. [149] leveraged Instagram data in an attempt to
measure food calories from image-related hashtags. Later, Jurgens et al. [85] drew first-order
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statistics and performed preliminary analysis at a group level of Fitocracy1 users’ exercising
activity, while Park et al. [122] studied publishing traits of social media users who openly
share their individual health and fitness related information. As noted, there were research
efforts made towards wellness lifestyle analysis and the results showed a great potential of
social media data to assist wellness related research. However, most of the works mentioned
above use only a single data source and thus do not review the inter-source and cross-modal
data relationship in Wellness domain. They may not be useful to gain deeper insights from
multi-source social media data and wearable sensors perspective.

Meanwhile, there have been multiple research attempts made towards a qualitative evaluation
of social media data relation in Urban Mobility domain. With the emergence of smartphones,
the data from location-based social networks was broadly adopted in many research works.
Good examples are the works performed by Ye et al. [179, 180]. First, the authors mined
spatial-temporal patterns between individual points of user trajectory followed by pattern
semantic meaning assignment [179]. Later, they extended the earlier proposed approach
by considering implicit relations between venues (co-visiting and category similarity) and
incorporating statistics such as check-ins distributions on daily (24 hours) and weekly (7
days) basis [180]. Later on, Noulas et al. [117, 118] and Scellato et al. [145] analyzed user
mobility patterns based on LBSN data at a large scale. The dataset was collected from
Foursquare and Gowalla LBSNs and served as a good support to examine the classical
user mobility modeling approaches [156]. As a result, Noulas et al. [118] concluded that
simple metrics like distance cannot describe human migration rules accurately and they need
to be supported with richer data. Such data can be inferred from LBSN. Finally, Cho et
al. [34] utilized cell phone location data together with data from two LBSNs to show that
short-range travel is spatially and temporally periodic, while social network ties influence
more long-distance travel. Many of these studies provide a good overview of various aspects
of human mobility. Some of them suggest the utilization of rich multi-modal data for deeper
user mobility analysis. However, till now there is not much work devoted to cross-source
data analysis in the Urban Mobility domain.

It can be seen that the area lacks research towards cross-source and cross-modal analysis
in Wellness and Urban Mobility domains, which introduces the large research gap. The
possible reason behind such gap is the absence of multi-source multi-modal datasets for
a large-scale social science research. Specifically, the necessity of inter-network account
disambiguation makes it tough for researchers to obtain unbiased large-scale multi-source
multi-modal data. Another possible problem is the lack of consistent data representation
between different data sources: different data is often available in many diverse forms, such
as video, images, text, sensor measurements, locations. These data modalities must be
represented in a mutually-consistent fashion before any sort of relationship analysis can be

1www.fitocracy.com
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conducted.

Aiming to bridge this research gap, in this chapter, we seek to address two research questions.
First, to understand the role of multi-source data for individual user profiling it is important
to know: RQ1: What is the relation between different data modalities, data
sources, and individual user attributes? Second, to gain an insight into the importance
of multi-source data for group user profiling it is necessary to understand: RQ2 What is
the relation between different data modalities, data sources, and detected user
communities?

To answer these two research questions, we performed a large-scale analysis of multi-source
multi-modal data towards Wellness and Urban Mobility Applications. Specifically, to
uncover the relationship between different data representations and wellness attributes, we’ve
conducted an extensive correlation analysis of different data representations at both inter-
source and intra-source levels. To gain further insights from the group profiling perspective,
we’ve utilized conventional spectral clustering on each data source to detect user communities
from each source independently. We then conducted inter-source community assignment
correlation analysis, which helps to uncover the relationship between the obtained user
communities. Our experimental results conform well with the assumptions behind this
thesis. Specifically, they show that inter-source data represent users from various diverse
perspectives while being significantly correlated at both inter-source and intra-source levels.
The latter encourages further qualitative and quantitative research on multi-source individual
and group user profiling.

6.2 Analysis Approach

In this chapter, we utilize Pearson correlation coefficient to examine the strength and direction
of the linear relationship between all pairs of variables in our multi-modal multi-source data.
We then employ significance testing in order to highlight and further discuss only significant
data relationships. The variables to be analyzed are: multi-source data representations,
ground truth labels, detected user communities.

6.2.1 Correlation Analysis: Pearson correlation

Correlation coefficient between two random variables X and Y for a population is defined as
follows:

ρ(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

, (6.1)
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where Cov(X,Y ) is population covariance, and V ar(X) is population variance.

Since the data for the whole population is not available due to the privacy restrictions of
social networks, the population correlation coefficient ρ(X,Y ) can not be computed. We
thus utilize sample correlation coefficient r, which is an estimate of the unknown population
correlation coefficient for a representative sample of size n:

r =
ˆCov(x, y)√

ˆV ar(x) ˆV ar(y)
=

∑n
i=1 (xi − x)(yi − y)√∑n

i=1 (xi − x)2
∑n

i=1 (yi − y)2
, (6.2)

where xi and yi are the ith members of the population sample, and x̄ and ȳ are the population
sample means: x̄ = 1

n

∑n
i=1 xi, ȳ = 1

n

∑n
i=1 yi.

6.2.2 Correlation Significance Testing: P-Value Test

To evaluate the significance of each computed linear correlation between all pairs of variables
in our population sample, in all further sections, we perform hypothesis testing by following
the so-called “p-value approach”. The hypothesis test reveals whether the value of the
population correlation coefficient ρ is significantly different from 0. The latter can be decided
based on the computed sample correlation coefficient r and the sample size n. Precisely, given
the null hypothesis2 (H0) saying the actual correlation between X and Y within the general
population is ρ = 0; the alternative hypothesis3 (HA) claiming that the actual correlation
between X and Y within the general population is ρ 6= 0; and the actual size of the sample
n ≥ 6 (on which an observed value of r is based); the quantity

t =
r√

(1− r2)/(n− 2)
(6.3)

can be used to calculate the p-value, which is the probability that, when the null hypothesis is
true, the statistical summary would be the same as or more extreme than the actual observed
results [173]. The p-value is determined by referring to a t-distribution with df = n− 2 when
conducting two-tailed test. To make a decision regarding the statistical significance of the
correlation between X and Y, the obtained value of p can be compared with the pre-defined
significance level α. If p ≤ α, we reject H0 in favor of HA; if p > α, we fail to reject H0.

2There is no sufficient evidence at the α level that there is a linear relationship between the X and Y
3There is sufficient evidence at the α level that there is a linear relationship between the X and Y
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Figure 6.1: The image features are significantly (α = 0.05) correlated to users’ BMI
data representations. The negative and positive correlations are colored in red and blue,
respectively

6.3 Correlation Analysis Towards Individual User Profiling

To answer research question (1)4, we first analyzed our data from wellness domain by
utilizing Pearson Correlation Coefficient (r) to uncover the relationship between different
data representations, wearable sensors data, and individual user attributes. The correlations
are computed based on users from “NUS-SENSE” [51] dataset who have contributed to
at least one of four social networks: Foursquare, Instagram, Endomondo, or Twitter. We
discovered and characterized the relationship between individual wellness attributes (BMI,
“BMI Trend”) and different data modalities, namely text, images, locations, and sensor
measurements. To do so, we highlighted significant correlations between different data
representations and BMI/“BMI Trend”. We utilized the significance test with the α = 0.05.
The data sample sizes n are specified in Table 3.1. It is noted that we consider negative
correlation to “BMI Trend” as being favorable since it means losing weight.

4What is the relation between different data modalities, data sources, and individual user attributes?
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Figure 6.2: The heuristic textual features are significantly (α = 0.05) correlated to users’
BMI data representations. The negative and positive correlations are colored in red and
blue, respectively

Figure 6.3: The LDA textual features are significantly (α = 0.05) correlated to users’ BMI
data representations. The negative and positive correlations are colored in red and blue,
respectively
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Figure 6.4: The frequency spectrum sensor features are significantly (α = 0.05) correlated
to users’ BMI data representations. The negative and positive correlations are colored in red
and blue, respectively

Figure 6.5: The sport type distribution sensor features are significantly (α = 0.05) correlated
to users’ BMI data representations. The negative and positive correlations are colored in red
and blue, respectively
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Figure 6.6: The frequency spectrum sensor features are significantly (α = 0.05) correlated
to users’ “BMI Trend” data representations. The negative and positive correlations are
colored in red and blue, respectively

Figure 6.7: The image concept features are significantly (α = 0.05) correlated to users’
“BMI Trend” data representations. The negative and positive correlations are colored in red
and blue, respectively
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Figure 6.8: The venue category features are significantly (α = 0.05) correlated to users’
“BMI Trend” data representations. The negative and positive correlations are colored in red
and blue, respectively

6.3.1 Data from Wearable Sensors

To study sensor data, we performed correlation analysis between wellness attributes and two
types of sensor data representations: distribution among Fourier spectrum bins and workout
categories (exercise semantics).

First, it can bee seen that users’ BMI is negatively correlated to active sport types (“Dancing”,
“Running”), while positively correlated to moderately active sport types (“Scuba Diving”,
“Walking”, “Cross-Training”) (see Figure 6.5). The possible reason is that people with higher
BMI may select less intensive workout types due to their mobility restrictions and fitness
level, while fitter ones often prefer more intensive workouts [85].

At the same time, there is a significant number of frequency bins from each sensor type
that are correlated to users’ BMI (Figure 6.4): 5 “HR” bins, 4 “Altitude” bins, 30 “Cadence”
bins, 5 “Oxygen” bins, and 3 “Speed” bins. The prevalence of ”Cadence” bins features can
be explained by the relatedness of cadence to exercises’ tempo, which, in turn, is related
to the actual fitness level of users: fitter users may perform sports activity with different
intensity as compared to less fit ones. Lastly, the significant correlation to user’ “BMI Trend”
(Figure 6.6) could be explained by the connection of exercise intensity and energy spending,
which is related to weight loss.
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To summarize, both exercise semantics and frequency bins features are tightly knit to BMI and
“BMI Trend”, which can be seen from the correlation plots. Intuitively, it can be explained
by the ability of sensor data to reveal knowledge about users’ actual physical status, which
is not available from other data sources. This again supports the incorporation of sensor
data into the learning process (as pointed out in Section 4.2.1).

6.3.2 Data From Social Media

The Instagram image concepts “Diaper” and “Sweatshirt” are positively correlated to users’
BMI, while “Over Skirt” and “Gown” image concepts reveal negative correlation (Figure 6.1).
The potential reason might be the difference of dressing preferences between users of different
BMI: users with overweight problems may take pictures of themselves wearing baggy garments,
while people with lower BMI may prefer slinky clothes instead. It is also interesting to note
that “Rugby Ball” and “Soccer Ball” show the highest negative correlation level to “BMI
Trend”. The explanation could be that sports activities (represented by sport-related image
concepts) help users to lose weight. Generally, it can be observed that many Instagram image
concepts are significantly correlated to personal wellness attributes. The possible reason is
that these image concepts represent wellness-related aspects of human life, such as diet,
sports activities, and dressing preferences. They are useful indicators of users’ wellness.

As mentioned in a previous study [105], Foursquare data is correlated to the country-level
obesity traits. The above conforms well with our observations (Figure 6.8), where the venue
categories “Ice Cream Shop” and “Fitness Center” are significantly correlated to the tendency
of gaining/losing weight, respectively. The relation of multiple venue categories to users’
dietary habits supports the idea of utilizing such data for individual user profile learning in
wellness domain (see Section 4.2.1).

Another interesting dependency can be observed between lexicon-based text features and
the BMI categories — the significant correlation between automatically extracted (from
user-generated text) food groups (“Cereal Grains and Pasta”, “Seafood”). Such observation is
also consistent with previous studies [105, 149, 4].

Let’s summarize the above observations. First, the global data analysis results are consistent
with previous works [54, 153] regarding the fact that multiple data sources describe users from
different perspectives. Second, many data representations are significantly correlated to BMI
and “BMI Trend” individual user attributes. At the same time, some data representations
are not linearly correlated to them. These highlights the necessity of feature selection
at the data modeling stage (as in Equation 4.3). Third, it can be seen that BMI index
negatively/positively correlated to numerous data representations. Essentially, this means
that the data representations expose proportional (or inversely proportional) trends to the
wellness attributes. This suggests that the adjacent BMI categories may represent users
with similar social media behavior, which must be considered at the learning stage (see
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Figure 6.9: Inter-community correlation plot

Section 4.2.2). Fourth, we would like to note that our correlation analysis results are also
consistent with the results of feature importance analysis in Section 4.2.3. Specifically, the
observed significant correlation between food groups and wellness attributes is well aligned
with the utilization of lexicon-based features for predicting the 6 BMI categories. At the same
time, the significant correlation of Instagram image concepts and venue semantics is consistent
with its extensive usage by all the predictive models. Finally, the significant correlation of
multiple frequency bins has resulted in the dominance of the frequency domain features in
the final models as compared to other feature types. Based on the above investigations,
we respond to the research question (1) by concluding that it is reasonable to
incorporate all the harvested data sources and data from wearable sensors into
individual user profiling.
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Table 6.1: Community assignment matrix, where communities are detected from each data
source separately and k = 4

User
Foursquare usr. com. Instagram usr. com.

4sq0 4sq1 4sq2 4sq3 inst0 inst1 inst2 inst3

user 1 0 0.27 0 0 0.23 0 0 0

... ... ... ... ... ... ... ... ...

user k 0.14 0 0 0 0 0 0.33 0

6.4 Correlation Analysis Towards Group User Profiling

To answer research question (2)5, we utilized Pearson Correlation Coefficient (r), which depicts
the relationship between user communities exposed from each data source independently. In
such a setting, each data source is represented by a graph structure, where all the graphs share
the vertex set. To detect user communities, we utilize the standard spectral clustering [102].
We empirically set k = 4 (number of clusters to detect), since it allowed us to achieve the
best recommendation performance in the case when spectral clustering is executed on each
social network separately (see Chapter 5.1.4).

The correlation analysis is performed based on data from the NUS-MSS dataset [54]. Specif-
ically, the correlation matrix is built based on users in Singapore who have contributed to
all three social networks: Foursquare, Instagram, and Twitter. The Pearson’s r is computed
based on community assignment matrix, where the matrix is computed as follows: for every
data source, user is assigned to one community and the value in matrix is equal to Heat
kernel (see Section 5.1.2) distance between the community centroid and user representation
in that network. To explain the idea, we give a toy example in Table 6.1, where the number
of detected communities for each source (k) is equal to 4; user 1 is assigned to community
4sq1 in Foursquare and inst0 in Instagram, while user k is assigned to community 4sq0 in
Foursquare and inst2 in Instagram.

We utilize the significance test with the α = 0.05 and data sample size of 4490 users. The
significantly correlated data representations are shown in Figure 6.9. For easier interpretation,
we have named and profiled some of the detected user communities and listed them in
Table 6.2. To achieve better visibility, we reorder the correlation matrix according to the
angular order of the eigenvectors [63] and highlight only the significantly correlated pairs
(α = 0.05).

From the inter-community correlation matrix, it can be seen that community inst1 from

5What is the relation between different data modalities, data sources, and detected user communities?
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Table 6.2: User communities detected from each graph layer independently for k = 4

ID Name Profile (Terms)

Twitter

1 Work/Active #misspellings, #words/tweet, work

Foursquare

1 Shop/Dine Mall, Chinese Restaurant, Fast Food, Japanese Restaurant, Food
Court

3 Business/Travel Airport, Café, Hotel, Bakery, Bus Station

Instagram

1 Beach/Leisure Lotion, Sunscreen, Sea slug, Swan

3 Home/Family Gong, Backpack, Dog, Pot, Library (Book)

Temporal

2 Misc. Weekends 12 – 15

3 Misc. Weekends 6 – 12, Weekdays 18 – 24

Mobility

3 Explorers #AOI outliers

Instagram (related to “Beach/Leisure” activities) is positively correlated to community 4sq1
from Foursquare (“Shopping/Dining”), but negatively correlated to temporal community
temp2 (“Weekends 12 – 15”) and Foursquare’s community 4sq3 (“Business/Travel”). The first
relation could be explained by the similarity between communities members lifestyle, where
leisure activities are often followed by shopping/dining activities and vice versa. The negative
relation, in turn, could be hypothesized by the lack of business trips and business-related
activities for the users from the “Beach/Leisure” community.

At the same time, Twitter community tw1 (“Work/Online Active”) is positively correlated
to temporal communities temp2 and temp3 (“Weekends 6 – 15, 18 – 24”), which could be
explained by the working schedule of work-oriented users: those who are more occupied by
daily routines on weekdays, but are able to spend more time online during weekends.

At last, Foursquare’s community 4sq3 (“Business/Travel”) is positively correlated to the
Instagram’s community inst3 (“Home/Family”), while negatively correlated to mobility
community mob3 (“Explorers”). Both examples could be explained by demographics and
lifestyle of “Business/Travel” users. Specifically, it could be hypothesized by the tendency of
business-oriented users to spend more time with family in the first case (positive correlation
with Home/Family community), and by everyday habits of visiting certain venues for dining
or outing in the second (negative correlation to the “Explorers” community).

It is worth noting that most of the communities extracted from the same layers are negatively
correlated to each other, which shows the good clustering ability of the spectral clustering
and the separability of graphs constructed based on each data source. The large number
of the significant inter-community correlations shows that the data sources of
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different modalities are able to complement each other, which responds to the
research question (2). The latter observation also supports the idea of joint community
detection from multi-source multi-modal data (see Section 5.1.2).

6.4.1 On Inter-Source Relationship

In past works [80, 174, 49], the research community highlighted the importance of studying
the relationship between different social media sources and sensors at the inter-source (cross-
modal) level. To gain more insights into such a relationship, in this section, we additionally
perform correlation analysis at the inter-source level. To do so, we extracted LDA topics
from each data source and modality [168], where the number of topics K is dictated by the
lowest perplexity values and equals to 50, 9, 7, 6, for Twitter, Instagram, Endomondo, and
Foursquare data sources, respectively. For all data types, we treat all user data as a document
(one document corresponds to one user) and each data unit (a word in a Twitter message,
Instagram image concept, Endomondo workout type, Foursquare venue category) as a “word”.
After obtaining the latent topics, we computed Pearson’s r between all the extracted topics,
user demographic attributes, temporal and mobility features. The correlations are computed
based on users from “NUS-SENSE” [51] dataset who have contributed to all four social
networks: Foursquare, Instagram, Endomondo, and Twitter. The results are presented in
Figures 6.10, 6.11, 6.12, 6.13, where inter-source and intra-source high order relations are
highlighted in a correlation matrix. For better readability, we name some of the extracted
topics and list them in Table 6.3. To achieve better visibility, we reorder the correlation
matrix according to the angular order of the eigenvectors [63] and highlight only significantly
correlated pairs in it. We utilize the significance test with the α = 0.05 and data sample sizes
n are indicated in Table 3.1. Several interesting significant correlations are discussed below.

Inter-Source correlation: Except the abundance of intra-source correlations, due to
obvious reasons, the strong correlation can also be observed at the inter-source level. For
example, topic 7 from Endomondo (intensive sports categories) is positively correlated
to topic 8 from Instagram (represented by beach/leisure image concepts), but negatively
correlated to topic 28 from Twitter (one of the sport-related textual topics). Such a relation
could be hypothesized by the difference of information that users tend to uncover in different
social venues [153]: users who prefer more intensive workouts may not post their sports
activities on Twitter due to the nature of their sports life, but may like to take more pictures
of leisurely occasions.

Temporal dependencies: We observed that most of the important 3h time durations
(0− 3, 6− 9, 9− 12, 18− 21, 21− 24) are significantly correlated to latent topics from all
data sources: topic 28 from Twitter and topic 3 from Endomondo are negatively correlated
to time duration 18− 21, but positively correlated to time duration 9− 12 [116].

Mobility dependencies: From the correlation matrix, it can be seen that many of user
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Figure 6.10: Significantly (α = 0.05) inter-source correlated data representations (matrix 1
out of 4). The negative and positive correlations are colored in red and blue, respectively
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Figure 6.11: Significantly (α = 0.05) inter-source correlated data representations (matrix
2 out of 4). The negative and positive correlations are colored in red and blue, respectively
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Figure 6.12: Significantly (α = 0.05) inter-source correlated data representations (matrix
3 out of 4). The negative and positive correlations are colored in red and blue, respectively
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Figure 6.13: Significantly (α = 0.05) inter-source correlated data representations (matrix
4 out of 4). The negative and positive correlations are colored in red and blue, respectively
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Table 6.3: Terms distribution among LDA topics extracted from different data sources

Topic ID Topic Name Topic Terms (Words)

Text latent topics

14 Sport mile, do, walk, fit, train, bit, step, travel, 00s, weight

28 Sport finish, kiss, cycl, walk, 1h, bike, mountain, 2h, 3h

34 Happy follow, pleas, list, sunshin, happiest, love, girl

Foursquare venue categories latent topics

0 Sport Gym, Home, Office, Train Station, Bakery, Athletics

1 Shop Restaurant, Shop, Store, College, Place, School, Bar

Instagram image concepts latent topics

6 Biking mountain, bike, unicycle, tricycle, moped, helmet

8 Leisure bathing, sunglasses, tie, wig, sunscreen, bow, maillot

Endomondo workout categories latent topics

3 H.Int. walking, skating, gymnastics, cricket, baseball

4 M.Int. step counter, walking, tr. walking, am. football

7 H.Int. running, boxing, snow shoeing

mobility representations are significantly correlated to other data modalities. For example, the
median size of users’ AOIs (the size of the area, where users are active: “Home”, “Work”, etc.
[131]) is significantly positively correlated to topic 34 from Twitter and to the Endomondo’s
topic 4 (related to walking). The possible reason is the difference of users’ lifestyle: users,
who, on average, travel by foot more (i.e. during the lunch break inside Work AOI) may
have larger AOI size, as compared to those who use public/private transport.

Online-to-Offline dependencies: The encouraging observations can be made from the
correlation between sensor data statistics and latent topics. Specifically, the average speed is
negatively correlated to topic 0 from Foursquare and topic 14 from Twitter, but positively
correlated to topic 6 from Instagram. We note that the negatively correlated topics are
both related to fitness sports activities, where topic 6 from Instagram is related to biking
and cycling. The possible explanation could be that people who perform stationary fitness
activities are, on average, attain lower speed during their exercises as compared to those
who use bikes for workouts and transportation. It also supports the idea that different data
modalities are inter-correlated and mutually complement each other [53, 54, 153], which
allows us to discover users’ activities in much wider perspective as compared to modeling
each modality independently (see Sections 4.1.2, 4.2.2, 5.1.2).
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Aiming to bring attention to the problem of inter-source integration, we listed some interesting
examples of inter-source data relationships above. These examples show that even completely
different, at first sight, data modalities, such as Sensor Data and Data from Image Sharing
Social Networks, are, indeed, significantly inter-correlated to each other and, thus, must be
properly integrated for joint learning purposes. Such correlation may negatively affect linear
models like in Equation 4.5 and may lead to sub-optimal performance. However, considering
that we applied `2,1 regularization as feature selection mechanism (see Equation 4.1), we do
not expect the linear correlation between features to affect the final performance significantly.

6.5 Summary

In this chapter, we studied the relationship between different data sources, user attributes,
and user communities. To uncover the relationship between different data representations
and wellness attributes, we’ve conducted an extensive correlation analysis of different data
representations at both inter-source and intra-source levels. To gain further insights from
the group profiling perspective, we’ve utilized conventional spectral clustering on each data
source to detect user communities from each source independently. We then conducted inter-
source community assignment correlation analysis, which helps to uncover the relationship
between the obtained user communities. Our experimental results show that inter-source
data represent users from various diverse perspectives while being significantly correlated at
both inter-source and intra-source levels, which encourage further research on multi-source
individual and group user profiling. The major contribution of this chapter is the large-scale
cross-source correlation data analysis and its discussion.
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Conclusions and Future Work

7.1 Conclusions

This thesis’ focus is on investigating user profiling across multiple social networks in Wellness
and Urban Mobility application domains. Considering that user profiling can be performed
on individual and group levels, this thesis proposed two multi-source learning schemes:
multi-source learning approach for individual user profiling and multi-source community
detection scheme for group user profiling. We practically applied the proposed approaches
in three user profiling scenarios: demographic profiling, physical wellness profiling, and
venue category recommendation. To demonstrate the applicability of the proposed methods
in a real-world scenario, we integrated them into cloud-based social multimedia analytics
platform, called bBridge.

In this thesis, we first performed individual user profiling. To build a comprehensive individual
user profile, we trained the efficient ensemble to predict users’ age and gender based on
data from three social networks. We then leveraged the M2WP framework to predict users’
BMI category and “BMI Trend” based on data from multiple social networks and wearable
sensors. The performance of the framework was enhanced by collective data source fusion
strategy, the introduction of sparsity into data representations, and the idea of a multi-source
multi-task learning via efficient inter-category smoothness regularization. To demonstrate
the advance of our proposed individual wellness profiling solutions over other state-of-the-art
baselines as well as gain deeper insight into wellness profiling performance, we conducted
an extensive quantitative evaluation, classification error analysis, and feature importance
analysis. Our experimental results demonstrate the crucial importance of joint learning from
multiple social media and sensor data for individual wellness profiling, which encourages
further research in this direction.

In this thesis, we further presented a study on multi-source group profiling and its application
in Urban Mobility Domain — Cross-Source Collaborative Venue Category Recommendation.
The proposed recommendation framework C3R utilizes both individual and group knowledge
to solve a task of venue category recommendation. Individual knowledge is modeled as the
distribution among venue categories that user has visited in the past, while group knowledge
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is modeled as the distribution of Foursquare venue categories among user community
members. The user communities are detected based on new regularized spectral clustering
approach that can perform an efficient partitioning of multi-layer user relations graph. By
performing comprehensive evaluation against the state-of-the-art baselines and different data
source combinations, we demonstrated that our proposed user-community-empowered venue
category recommendation framework can achieve superior recommendation performance.

To show the applicability of our individual and group user profiling solutions to the real-world
scenario, we integrated all the earlier proposed techniques in cloud-based Big Data Platform
for Social Multimedia Analytics, called bBridge [55]. The platform automatically detects
and profiles meaningful user communities in a specified geographical region, followed by rich
analytics on communities’ multimedia streams. The system executes a community detection
approach that considers the ability of social networks to complement each other during the
process of latent representation learning, while the community profiling is implemented based
on our proposed multi-source individual user profiling techniques. The stream analytics
is performed via cloud-based stream analytics engine, while the multi-source data crawler
deployed as a distributed cloud jobs.

Last but not least, we conducted a comprehensive analysis of the relationship between
multiple data sources in Wellness and Urban Mobility domains. The study’s results conform
well with the assumptions behind this thesis. Specifically, it shows that inter-source data
represents users from various diverse perspectives while being significantly correlated at both
inter-source and intra-source levels. The latter suggests further qualitative and quantitative
research on multi-source individual and group user profiling.

Let’s once again summarize the major contributions of this thesis:

• Cross-network data gathering and alignment scheme that allows for large-scale data
gathering from an arbitrary number of social networks that are enabled with inter-
network reposting feature.

• Generic multi-source supervised learning framework that is able to learn from mul-
tiple incomplete data sources while performing feature selection and inter-category
regularization on-the-fly.

• Generic multi-layer (multi-source) graph clustering approach that considers inter-source
relationship during the clustering process.

• Large-scale cross-source correlation data analysis and its discussion.
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7.2 Future Work

Except for prediction of user demographics and weight-related individual attributes, the
inference of other individual and group wellness attributes can be approached in future
works. For example, the so-called wellness-related hashtags could be used for users’ wellness
status prediction, wellness-related life events detection [4], and chronic disease tendency
estimation. Precisely, the #bgnow hashtag could be utilized for diabetes-related social-
media content identification and individual wellness timeline construction [4]. At the same
time, such hashtags as #foodporn or #asthma could be employed in food consumption-
related research [105] and asthma inference-related research [128], respectively. In a real-world
scenario, such research must be conducted based on multi-source multi-modal data [54, 55, 51],
which was not broadly utilized yet and thus expected to be widely adopted in future.
Additionally, we would like to highlight that “NUS-SENSE” dataset naturally supports all
the above research directions by providing not just personal wellness and demographics
ground truth, but also the wellness-related hashtags as well as users’ sports preferences and
demographic attributes.

It is worth noting that one possible limitation of our proposed group user profiling scheme is
its computational time complexity, which is introduced by the graph Laplacians computation.
In future works, this issue could be resolved via reformulating the spectral clustering problem
in a smaller space [33]. Specifically, by replacing N × N graph Laplacians with P × P
matrices (P � N), a solution of mathematically-equivalent problem in significantly reduced
space could be obtained. The final clustering could be then efficiently recovered from the
obtained solution, while P can be chosen to be much smaller than N so that the running time
could grow almost linearly to N [33]. Except for addressing the limitation above, our future
work includes the development of semi-supervised techniques for user community detection
guidance based on domain knowledge. Exactly, the domain knowledge about really-existing
user communities (e.g. Facebook groups) or multi-source social graphs (e.g. social ties from
different social networks) could potentially improve the quality of user community detection
and recommendation in Urban Mobility domain. Finally, we plan to utilize additional data
sources, such as a social graph, to diversify the community detection and recommendation
outputs. Again, we would like to highlight that “NUS-SENSE” and “NUS-MSS” datasets
support the research mentioned above.

Lastly, considering the wide applicability and the recent popularity of neural networks, in
our future works, we will investigate the application of deep learning to individual and group
user profiling [129]. Particularly, we plan to apply Long-Short Term Memory Networks
(LSTMs) to leverage on the temporal dependencies within multi-source data for inference of
such individual user attributes as Personality and Depression.
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Appendix A

7.3 Inter-Rater Agreement Measures

Cohen’s Kappa

Cohen’s Kappa coefficient [38] is a statistical measure of the degree of agreement between two
independent raters (e.g. Rater A and Rater B) that takes into account the possibility that
agreement could occur by chance. It is often used in machine learning as a complementary
evaluation measure. The reason for its extensive use is its ability to measure robustness [87].
The robustness of the measure is achieved by taking into account the possibility of the
agreement between classification results and ground truth labels occurring by chance. In
the case of two independent raters (i.e. Rater A and Rater B), Cohen’s Kappa is defined as
follows:

κ =
po − pe
1− pe

, (7.1)

where po =
∑k

i pii is the overall proportion of observed agreement among raters, and
pe =

∑k
i pi.p.i is the the overall proportion of chance-expected agreement (see Table 7.1 for

notation details).

Table 7.1: Example of joint proportions of ratings by two raters on a scale with k categories
XXXXXXXXXXXRater A

Rater B 1 2 ... k Total

1 p11 p12 ... p1k p1.

2 p21 p22 ... p2k p2.

.... ... ... ... ... ...

k pk1 pk2 ... pkk pk.

Total p.1 p.2 ... p.k 1
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Table 7.2: Landis and Koch Interpretation of Cohen’s κ [91]

Kappa Statistics Strength of Agreement

<0.00 Poor

0.00-0.20 Slight

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Substantial

0.81-1.00 Almost Perfect

Weighted Cohen’s Kappa

From the Cohen’s Kappa description, it can be seen that κ statistic equally treats all
disagreements between raters. In the case of binary classification (k = 2), such behavior
does not affect the results. However, in the case when more than two categories are
involved (k > 2), κ computation in its original form could be misleading due to the equal
penalization of all disagreements between raters [39]. For example, in the case of age
group classification, where the categories are ordered, misclassification into neighboring age
groups (e.g. 20-30 and 30-40) must be penalized less than misclassification of completely
different age groups (e.g. < 20 and > 40) [14]. To overcome the above shortcomings,
Cohen et al. [39] further proposed the weighted version of the statistics κw, where the
weight matrix W = (wi,j) ∈ Rk×k is involved. W’s main diagonal cells usually contain zeros,
which represents perfect agreement between taters [39]. Off-diagonal cells contain weights
indicating the seriousness of that disagreement. The weighted versions of proportions can
be defined as po(w) =

∑k
i

∑k
j wijpij and pe(w) =

∑k
i

∑k
j wijpi.p.j for weighted observed

and chance-expected proportions, respectively [59]. The weighted κ statistics is defined as
follows:

κw =
po(w) − pe(w)

1− pe(w)
, (7.2)

Table 7.2 indicates the widely-adopted rater agreement labels proposed by Landis and
Koch [91] for unweighted Cohen’s Kappa in the Healthcare domain. The proposed labeling
schema can be referred during inter-rater agreement assessment. However, assuming that
the proposed labels were originally used to measure the disagreements between human raters
and for the small populations (< 150 samples), their ranges are advisory but not obligatory
for inter-rater agreement assessment.
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