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Wellness is a widely popular concept that is commonly applied to fitness and self-help products or services.
Inference of personal wellness-related attributes, such as Body Mass Index (BMI) category or diseases ten-
dency, as well as understanding of global dependencies between wellness attributes and users’ behavior is of
crucial importance to various applications in personal and public wellness domains. At the same time, the
emergence of social media platforms and wearable sensors makes it feasible to perform wellness profiling
for users from multiple perspectives. However, research efforts on wellness profiling and integration of so-
cial media and sensor data are relatively sparse, and this study represents one of the first attempts in this
direction. Specifically, we infer personal wellness attributes by utilizing our proposed multi-source multi-
task wellness profile learning framework — “WellMTL”, which can handle data incompleteness and perform
wellness attributes inference from sensor and social media data simultaneously. To gain insights into the
data at a global level, we also examine correlations between first-order data representations and personal
wellness attributes. Our experimental results show that the integration of sensor data and multiple social
media sources can substantially boost the performance of individual wellness profiling.
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1. INTRODUCTION
In the past decade, the impact of social multimedia services on people’s daily life have
drastically increased [Filchenkov et al. 2014]. For example, more than half of American
smartphone users were reported to spend an average of 144 minutes per day browsing
their mobile devices [Morningside 2013], aiming to stay socially connected. Meanwhile,
these users often follow the so-called Quantified Self tendency, which includes measur-
ing and publishing various signals from wearable sensors (such as heart rate, body
acceleration or physical location). This data is of crucial importance for research in the
wellness domain since it describes users’ actual physical condition [Park et al. 2016],
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Fig. 1: Personal wellness attributes inside individual wellness profile

which is related to users’ well-being. At the same time, recent works demonstrate the
great potential of social media data for wellness-related research [Abbar et al. 2014;
Chou et al. 2014; Mejova et al. 2015; Weber and Achananuparp 2015; Akbari et al.
2016; Park et al. 2016]. Considering that nowadays most Internet-active adults ac-
tively use more than three social network services in their everyday life [GlobalWe-
bIndex 2016], and with the wide availability of data from wearable sensors, it is natu-
ral to combine multimodal content from different social networks with sensor data for
joint modeling [Jain and Jalali 2014; Jalali and Jain 2015; Park et al. 2016]. Such inte-
gration will narrow the gap between users’ online representation and actual physical
status, which is the right step towards realizing the ideal of wellness profiling.

This article focuses on the problem of individual wellness user profiling based on
data from multiple social networks and wearable sensors. An individual wellness user
profile typically involves personal user attributes [Farseev et al. 2016] such as BMI3

category, demographics [Farseev et al. 2015b], personality [Buraya et al. 2017], or
chronic disease tendency [Akbari et al. 2016], as outlined in Figure 1. In our study,
we focus only on two personal wellness attributes — BMI category and “BMI Trend”.
According to World Health Organization (WHO), BMI measure is categorized into one
out of 8 categories, namely “Severe Thinness”, “Moderate Thinness”, “Mild Thinness”,
“Normal”, “Pre Obese”, “Obese”, “Obese II”, and “Obese III” [WHO 2011]. The “BMI
Trend” is the direction of BMI fluctuation over time (Increase/Decrease) for those
whom we have multiple measurements. The BMI category and “BMI Trend” attributes
are closely related and correlated to one’s overall health. For example, in [Field et al.
2001], it was discovered that people whose BMI is higher than 35.0 are approximately
20 times more likely to develop diabetes. Other benefits of such attributes include: (i)
BMI category can be further used in public health domain to monitor wellness tenden-
cies of social media users at the global level; and (ii) “BMI Trend” information can be
utilized by users to rectify their lifestyle (i.e. via an interactive mobile APP), and by
doctors to gain a complete picture of patients’ health.

There are two major challenges in addressing individual wellness profile learn-
ing. First, multi-source multi-modal data must be efficiently represented. Besides
the textual data, social media services involve data of various modalities. For example,
in Instagram4, users share recently taken pictures and videos, while in Endomondo5

users post information about their workouts, which is strongly dependent on the tem-
poral and spatial aspects. Integration of such heterogeneous multimodal data sources
requires the development of efficient and mutually consistent data representation ap-
proaches. Second, it is essential to perform effective joint multi-source data model-
ing. Joint data modeling for individual wellness profile learning is a tough challenge
since the data from independent media sources is different in nature. Furthermore,

3The BMI measure is defined as the body mass divided by the square of the body height. It is widely used
to quantify the amount of tissue mass (muscle, fat, and bone) in an individual [WHO 2011]
4http://instagram.com
5http://endomondo.com
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multi-source data is often incomplete, which means that some users may not be active
on all social networks. Lastly, personal wellness attribute categories (classes) are often
inter-related (i.e. the adjacent BMI categories could unite users of similar lifestyle and
social media content [Mejova et al. 2015]), which must be taken into account at the
learning stage. Development of a learning framework that can handle all these issues
is a crucial challenge.

Inspired by the aforementioned challenges, we seek to address the following re-
search questions:

(1) What is the relationship between social media data representations, wear-
able sensor data representations, and wellness attributes?

(2) Is it possible to improve the performance of BMI category and “BMI Trend”
inference by joint modeling of social media and sensor data?

(3) Is it possible to improve the performance of BMI category and “BMI Trend”
inference by incorporating inter-category relatedness into the learning
process?
To answer the above research questions, we present a new computational wellness

profiling framework “WellMTL”. First, we study relationships between different mul-
timodal data representations (image concepts, venue categories, sports activities, sen-
sor features, mobility patterns, latent topics) and wellness attributes. Second, we con-
struct users’ individual wellness profiles by predicting their BMI category and “BMI
Trend”. We treat the individual wellness profile learning as a regularized multi-task
learning (MTL) problem [Evgeniou and Pontil 2004]. Specifically, we represent differ-
ent data source combinations as MTL “tasks”. Concurrently, we consider inter-category
relationship by regularizing the MTL model by learning “similar” categories in a
mutually-consistent fashion. Third, we perform error and feature importance analy-
sis aiming to understand which BMI categories can be inferred more accurately and
which particular feature types facilitate better inference of each BMI category. Lastly,
we discuss the inter-source data correlation and the application of our framework.

The main contributions of our study are summarized as follows:

— Formulation of a multi-task learning framework for wellness attribute in-
ference. We formulated personal wellness profiling of users from multiple social
networks as a regularized multi-task learning problem. In this proposed “WellMTL”
framework, we represented the social media and sensor data in a unified manner.

— Extensive data analysis. To offer insights on the need to combine data from mul-
tiple social networks and wearable sensors within one integrated framework, we
performed first-order and high-order statistical analysis of the relationship between
different data representations and wellness attributes. Additionally, we conducted
inference error analysis and feature importance analysis on each wellness category.

The rest of the paper is organized as follows: Sections 2 and 3 present related work
and data description, respectively. The data analysis at a global level and the indi-
vidual wellness profiling are described in Sections 4 and 5, respectively. We evaluate
individual wellness profiling performance, conduct error analysis, and perform feature
importance in Section 6. This is followed by a discussion on inter-source data relation-
ships in Section 7. The real-world application of our proposed framework is outlined
in Section 8, while framework’s limitations and future work directions are outlined in
Section 9. We then conclude the paper in Section 10.

2. RELATED WORK
Recently, several research studies were devoted to cross-social network user activity
analysis and its application in wellness domain. For example, medical and healthcare
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communities suggested the utilization of social media data as a useful resource to
monitor food-related habits for obese and diabetes patients [Eggleston and Weitzman
2014]. Culotta et al. [2014] performed an analysis on Twitter data aiming to predict
US citizens’ health-related statistics such as obesity or teen pregnancy, while Chou et
al. [2014] conducted a qualitative study on weight-related interactions of Twitter and
Facebook users. Another study [Fried et al. 2014] was targeted to predict diabetes and
overweight rates for 15 US cities. Mejova et al. [2015] and Silva et al. [2014] attested
to the predictive power of Foursquare-based features for the group obesity inference
task and cultural differences analysis, while Sharma et al. [2015] leveraged Instagram
data in an attempt to measure food calories from image-related hashtags. Later, Jur-
gens et al. [2015] drew first-order statistics and performed preliminary analysis at a
group level of Fitocracy6 users’ exercising activity, while Weber et al. [2015] guided ma-
chine learning models based on data from MyFitnessPal7 to predict a success of users’
personal diet plans. At last, Park et al. [2016] studied publishing traits of social media
users who openly share their individual health and fitness related information, while
Akbari et al. [2016] introduced a learning framework for personal wellness events cate-
gorization. As noted, there were research efforts made towards wellness lifestyle anal-
ysis and the results showed enormous potential of social media data to assist wellness
related research. However, most of the works mentioned above are either descriptive
in nature, use only a single data source, or built on naive data analytics approaches.
They may not be useful to gain deeper insights from multi-source social media data
and wearable sensors.

Meanwhile, there were some research efforts done on multi-source learning for user
profiling. For example, Liu et al. [2009] implemented the so-called `2,1 regularization
to obtain sparse data representations for feature selection purpose, which is useful in
learning from high-dimensional data. However, the data source integration was car-
ried out in an early fusion manner, where all the features were combined into one
vector before model training. Such a data integration strategy may result in the so-
called “curse of dimensionality” problem and, consequently, suboptimal classification
performance. Later, Farseev et al. [2015b] introduced an ensemble learning solution,
aiming to combine multi-source multimodal data for demographic user profile learn-
ing. Nonetheless, the model was trained independently on each source and consoli-
dated in a “late-fusion” manner, which does not fully take advantage of multi-source
data [Song et al. 2015b]. Finally, Song et al. [2015a] proposed a multi-source learning
framework for Volunteerism tendency prediction for users of different social networks.
The missing data was induced by the proposed constrained Non-Negative Matrix Fac-
torization (NMF) approach [Paatero and Tapper 1994], which could introduce bias into
the final data representations and, thus, may not apply to sparse real-world datasets.
The above works are relevant to our study, but may not be directly applicable in our
case due to the drawbacks of the utilized data integration approaches.

The problem of wellness profile learning from multiple social networks and sen-
sor data exhibits dual-heterogeneities: each wellness category corresponds to features
from multiple sources. Towards this end, the most related work lies in the area of
multi-view multi-task learning. Yuan et al. [2012] proposed to treat the problem of
multi-source fusion as a multi-task learning for enhancing Alzheimer’s Disease predic-
tion. The proposed sparse feature learning approach is relevant to this study regarding
its feature selection ability, but could not be directly applied to our case due to its for-
mulation for binary classification. Later, Farseev and Chua [2017] proposed another
sparse multi-task learning framework for wellness attributes inference. The proposed

6http://www.fitocracy.com
7http://myfitnesspal.com
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framework is able to handle incomplete data sources and feature selection simultane-
ously via efficient `2,1 regularization. However, the framework does not consider the
inter-category relationship, which seems to be essential for our task. Aiming to model
such a relationship, He and Lawrence [2011] proposed a graph-based iterative frame-
work for multi-view multi-task learning in the context of text classification. Given task
pairs, the model projects them to a new latent space based on the sources’ similarities.
However, such an approach does not allow for generating predictive models based on
data samples that do not share any common source, which is an important restriction
in the real-world settings. Inspired by the limitations above, Song et al. [2015b] pro-
posed a structure-constrained multi-task learning framework for user interests infer-
ence from multi-source data. To model user interest relation, authors included external
knowledge in the form of “interest relationship weights”, which makes the framework
biased towards particular datasets and tasks. Finally, Farseev et al. [2017] proposed
the utilization of multi-layer graph clustering for cross-domain venue category rec-
ommendation. Specifically, authors introduced an approach for automatic inference
of inter-source relationship weights and plugged the obtained weights in multi-layer
subspace-regularized spectral clustering objective. However, the method is not appli-
cable to our problem, since it requires user relationship graph to be defined. Due to
the reasons above, it is essential to implement a fully-automated multi-source individ-
ual wellness profiling approach that would not rely on external knowledge and data
completion techniques, while considering the relationships between different wellness
categories.

3. DATA FROM SOCIAL MEDIA AND SENSORS
It is well-known that for building a comprehensive individual user profile, it is essen-
tial to incorporate multimodal data from various sources that represent users from
multiple perspectives [Farseev et al. 2015b; Song et al. 2015b]. At the same time, to
build a complete personal wellness profile, it is necessary to utilize information about
users’ physical health [Corbin et al. 2001; Akbari et al. 2016]. In the following, we
describe the commonly-used data modalities and their potential for individual well-
ness profiling. First, it was noted that textual information is one of the most valu-
able contributors towards user profile learning, mainly because of its high availabil-
ity and its ability to describe users’ daily routines comprehensively [Farseev et al.
2016]. For example, users often post in microblogs about their recent activities and
health updates [Akbari et al. 2016]. This information is related to users’ wellness and
useful for individual wellness profiling [Akbari et al. 2016]. Second, in our previous
work [Farseev et al. 2015b], we observed that visual data plays a significant role in age
and gender prediction. It is reasonable to hypothesize that this data is also useful for
individual user profile learning in wellness domain. For example, users may post pic-
tures of food they eat [Sharma and De Choudhury 2015], which may affect users’ BMI
and can be used by inference models to predict their BMI category and “BMI Trend”
attributes. Third, it was reported that data from location-based social networks is use-
ful for obesity estimation at a group level [Mejova et al. 2015], which demonstrates its
potential for use in personal BMI category and “BMI Trend” prediction task as well.
Finally, data from wearable sensors was found to be valuable for tackling the activ-
ity recognition [Lara and Labrador 2013] and health monitoring [Banaee et al. 2013]
problems, which shows its potential towards individual wellness profile learning.

Considering the above, in this work we utilize the following social networks:

— Twitter (the largest English-speaking microblog) micro-posts to be used as a textual
data source.
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— Instagram (the largest mobile Image-sharing service) pictures and its descriptions
(comments) for use as image and textual data sources.

— Foursquare (the largest purely location-based social network) check-in records and
its corresponding comments (shouts) were adopted as venue semantics, mobility,
and textual data sources.

— Endomondo (one of the largest sports activity-tracking social networks) workouts
were used as a sensor data source and for ground truth construction (BMI category
and “BMI Trend” attributes).

It is worth mentioning that other than providing the so-called, exercise semantics
(i.e. sports activity type, as in Fitocracy and MyFitnessPal), Endomondo also serves as
a rich source of sequential data from wearable sensors and reliable wellness-related
ground truth. The exercise data sequences are often publicly available and usually
include a series of multi-dimensional data points, each of which may contain such at-
tributes as Altitude, Longitude, Latitude, Time, and Heart Rate (in cases when a heart
rate sensor is set up). The ground truth labels can be derived from publicly accessible
Endomondo user profiles’ web pages, which often include such personal attributes as
Country of Residence, Postal Code, Age (Birthday), Gender, Height and Weight. These
attributes are either manually input by Endomondo App users or automatically mea-
sured by connected “smart” sensors (i.e. FitBit Aria Smart Scale8). The above dictates
that Endomondo data goes beyond representing users from one more modality, but
bridges the gap between social media-based users’ representation and their actual
physical activities and condition. The BMI category and “BMI Trend”9 ground truth
extracted is reliable, since Endomondo users are encouraged to provide the correct
weight and height values, which are further used by Endomondo App to estimate the
calorie spent, BMI, and exercise efficiency. Furthermore, assuming that most of the
users are familiar with their height ± 2 cm (i.e. 165 cm), according to the BMI category
classification [WHO 2011], such users will be assigned to the BMI category of “Over-
weight” in cases when their weight is in the range 68 − 82 kg. The above means that
the BMI category of each user can be labeled correctly in most of the cases. Further-
more, some other recent works confirmed the reliability of self-reported social media
wellness attributes [Weber and Achananuparp 2015; Akbari et al. 2016; Park et al.
2016].

3.1. Cross-Network User Identification And Data Collection
To collect data generated by the same individuals from multiple social networks, it
is necessary to solve the task of cross-network user identification [Zafarani and Liu
2013]. One approach to solving this issue is the utilization of social network aggre-
gation platforms, such as About.me10. About.me enables people to create a public on-
line “name card” that includes a self-described biography and links to the one’s so-
cial network accounts and personal websites. This information is usually sufficient for
further multi-source data collection. However, according to Alexa Internet Survey11,
About.me is ranked as an unpopular website (9, 804th worldwide position), while some
research groups describe About.me users as atypical [Lim et al. 2015]. The tendency of
About.me users to leverage on multiple social networks aiming to benefit from having
an online content aggregation point could explain their abnormal online behavior [Lim
et al. 2015]. Consequently, their generated data could be biased by their online goals

8http://www.fitbit.com/sg/aria
9The “BMI Trend” was only computed for those users, who have changed their weight in profile during the
data collection process
10http://about.me/
11http://www.alexa.com/siteinfo/about.me Retrieved on 26 April 2017
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Fig. 2: Publicly available Endomondo workout

and may lead to sub-optimal user profiling performance. Furthermore, the available
amounts of appropriate About.me data does not allow for conducting research in Well-
ness domain at a large scale due to the lack of ground truth.

Motivated by the gaps mentioned above, in this work we propose the new approach
for harvesting social multimedia data at a large scale. Specifically, we utilize one social
network (i.e. Twitter) as a “sink” for re-post data from other social networks (Insta-
gram, Foursquare, Endomondo), so that the linkage between social media portals can
naturally be obtained with close to zero error rate. The data collection process can be
described by the following three steps:

— Search of seed users: We collected a “seed” set of Twitter users, who were recently
active in Endomondo, by performing a search via Twitter Search API12. Specifically,
we selected those users who have recently posted the hashtags “#Endomondo” or
“#endorphines” together with the expression “I just finished” in their Twitter time-
line, which allows us to find users who are active in both Endomondo and Twitter.

— User-generated content collection: We then started a Twitter “stream”13 that
involve all “seed” users and download the multi-source user-generated content of
these users (via URLs to the original posts, provided in tweets). Such a data col-
lection approach makes it possible to avoid the user identification problem, since it
fulfills the cross-network account mapping whenever users perform a cross-network
activity (i.e. posting an Endomondo image on Twitter). To be confident in cross-
network account mapping correctness, we removed all retweets and ensured that
all cross-network messages were automatically tweeted via cross-linking function-
ality of the corresponding social media Apps (Endomondo, Instagram, Swarm).

— Ground truth collection: During the Twitter crawling process, we conducted
daily monitoring of Endomondo users’ accounts and recorded all the BMI updates
during the whole data collection period. Users’ Weight and Height updates were
used to compute their BMI, which was utilized to estimate “BMI Trend” ground
truth attribute.

12http://dev.twitter.com/rest/public
13http://dev.twitter.com/streaming/public
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Fig. 3: Publicly available Endomondo user profile

Fig. 4: Twitter repost of an Endomondo workout

Table I lists the number of posts and ground truth records in our collected dataset.
We note that all users in the dataset have contributed data to at list two social net-
works, where one of them is Twitter.

To encourage further research, the collected data was released to pub-
lic [Farseev and Chua 2017] as NUS-SENSE dataset14.

3.2. Data Representation
As mentioned earlier, efficient data representation is a significant step in multi-source
profile learning pipeline. Its importance is dictated by its ability to bridge the semantic
gap between different data modalities by producing mutually-consistent data repre-
sentations. The extracted features are described below.

14http://nussense.farseev.com
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Table I: Number of data records in NUS-SENSE dataset

Data Source Twitter Endomondo Foursquare Instagram
Total No. of Posts 1, 676, 310 140, 926 19, 743 48, 137
Total No. of Users 5, 375 4, 205 609 2, 062
Average No. of User Posts 311 33 32 23
No. of Age labels 3, 974 3, 111 427 1, 525
No. of Gender labels 5, 375 4, 025 609 2, 062

No. of BMI category labels 1, 052 870 116 372
No. of “BMI Trend” labels 152 136 18 51

Text Features: In our study, we extracted textual data from the following data
sources: Twitter tweets, Instagram image captions, Instagram image comments, and
Foursquare check-in comments. All textual data was aggregated at the individual user
level and filtered/corrected by using Microsoft Office Spell Checker15. More specifically,
we extracted the following features:

— Latent Topic Features. We merged all the textual data of each user into a docu-
ment. All documents from multiple users were projected into a latent topic space
using Latent Dirichlet Allocation (LDA) [Blei et al. 2003]. We trained the topic
model with T = 50 topics (revealed the lowest perplexity score on interval from
T = 1, 5, ..., 200), with α = 0.5, β = 0.1 (determined empirically). Feature vec-
tor was constructed as a distribution of each user among detected latent topics:
ui,LDAText = (tli,1, tli,2, ..., tli,50).

— Writing style features. As in [Farseev et al. 2015b], we extracted such writing
style features as: number of mistakes per post, number of slang words per post,
average post sentiment, etc. In total, 14 features were extracted: ui,HeurText =
(thi,1, thi,2, ..., thi,14).

— Lexicon-based features. We used crowd-sourced lexicon of terms associated with con-
troversial subjects from the US press [Mejova et al. 2014] and the lexicon of terms’
healthiness category [Mejova et al. 2015]. Additionally, we extracted food type and
average calorie content from each post by incorporating the Twitter Food Lexicon
[Silva et al. 2014]. Lastly, all the food-related features were grouped in one user-
dependent vector of size 32: ui,FoodText = (tfi,1, tfi,2, ..., tfi,32).

Venue Semantics Features: Similar to [Farseev et al. 2015b], we represented loca-
tion data as a distribution of users’ check-ins among 764 Foursquare venue categories.
Such users’ representation describes venue semantics preferences of Foursquare
users and can be related to users’ food and activity preferences [Mejova et al.
2015]. To overcome the data sparsity problem, we further reduced the data di-
mensionality by extracting Top 86 principal components [Jolliffe 2002] (preserves
85% of variance) and representing the venue semantics data as: ui,LocCatPCA =
(lcPCAi,1, lcPCAi,2, ..., lcPCAi,86).
Mobility and Temporal Features: As stated earlier, user mobility and temporal
aspects are important in user profile learning [Farseev et al. 2015b; Noulas et al. 2012].
The mobility features were computed based on users’ areas of interest (AOIs) [Qu and
Zhang 2013], which is, essentially, the geographical regions of high user’s check-ins
density (regardless the check-in venue semantics). AOIs were obtained by performing
density-based clustering [Sander et al. 1998] over the check-ins of each user (with

15http://products.office.com
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ε = 0.05, the minimum number of points MinPts = 3) and consider the convex hull
of each cluster as a new AOI. The user’s AOIs represent their geographical mobility
patterns [Noulas et al. 2012; Qu and Zhang 2013] and is correlated to their wellness
lifestyle. We extracted the following 12 mobility and temporal features (ui,MobTemp =
(mti,1,mti,2, ...,mti,12)):

— Average number of posts during each of the 8 daytime durations, where each time
duration is 3 hours long (i.e. 15− 18). The feature is an indicator of user’s temporal
online activity and related to their wellness [Chahal et al. 2013].

— Number of areas of interest (AOI). The feature reflects the mobility side of user’s
physical activity. For example, users with more AOIs may maintain more intensive
lifestyle. AOIs also represent user’s frequent areas of activity (i.e. home, office, uni-
versity/school) [Qu and Zhang 2013] and may indicate how far users are willing
to travel on a daily basis. It, in turn, reflects users’ wellness attributes, since it is
related to their lifestyle.

— Median size of user’s AOIs16, which indicates users’ mobility inside each AOI. The
feature is an indicator of user’s everyday traveling habits inside their main activity
areas. It can, thus, indicate the approximate distance that the users are willing to
travel on foot.

— The normalized number of AOI outliers. The feature shows how often users visit
places that are not located inside their AOI, which may reflect the users’ “conven-
tionalism” level. Mainly, it shows how often users deviate from their regular mobil-
ity patterns, which is related to users’ physical activity level.

— Median distance between AOIs. This feature reflects users’ movement at intra-
city/inter-city/international level. Specifically, it shows how often and how far users
travel between their activity zones. It could be daily trips to job place, vocation
journeys or business trips. Such a feature is related to users’ lifestyle and, thus,
wellness.

Even though the venue semantics and mobility features were extracted from the
same data source, they are different in nature. Specifically, the venue semantics fea-
tures represent users’ geo-independent location preferences [Wang et al. 2015] (i.e.
Restaurant, Cinema, Church). At the same time, users’ mobility features describe
users’ movement in space and related to their activity level in a particular geographi-
cal region [Noulas et al. 2012].
Visual Features: In order to represent data from visual modality, we computed dis-
tribution of each Instagram photo among the 1000 ImageNet visual concepts [Deng
et al. 2009]. We then averaged the values of each 1000 visual concept to obtain a user-
dependent feature vector of size 1000. The image concept detection was performed by
leveraging on GPU implementation [Jia et al. 2014] of a state-of-the-art deep learning
system GoogleNet [Szegedy et al. 2015]. Similar to venue semantics features, we ex-
tracted Top 150 principal components [Jolliffe 2002] (preserves 85% of variance) from
image concepts data: ui,ImgConPCA = (vcPCAi,1, vcPCAi,2, ..., vcPCAi,150).
Sensor Features: One of the most informative data sources for wellness profile learn-
ing and, at the same time, the most challenging regarding consistent representation, is
the data from sensor devices. The main problem is the necessity to consider the spatial-
temporal aspect of sensor data, since the static characteristics of each data sample can
be biased toward individual’s health and, thus, may not be suitable for further integra-
tion with other sources for joint profile learning. To represent sensor data consistently
with other data modalities, we incorporated the following feature types:

16Where AOI size is defined as the median distance between a center of mass and all points inside AOI
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— Workout statistics. We computed the following averaged features using all sen-
sor data samples for each user: Distance (Ascend/Descend), Speed, Duration,
Hydration. Such features represent users’ activity levels and is thus related
to one’s wellness attributes. In total, 10 features were extracted: ui,SensStat =
(ssi,1, ssi,2, ..., ssi,10).

— External sensors statistics. Apart from wearable sensor features, we leveraged data
from external weather sensors (where it is available) such as Wind Speed and
Weather Type. It is known that weather may affect one’s exercise productivity. It
can thus serve as a useful complimentary signal for wellness attribute inference. To
make the feature set appropriate for model training, we represented each user as a
distribution among 44 weather types from our dataset, computed through all user’s
workouts: ui,SensExt = (sei,1, sei,2, ..., sei,44).

— Workout semantics. We also represented sensor data as a distribution of users’ work-
outs among 96 Endomondo workout categories: ui,SensWCat = (sci,1, sci,2, ..., sci,96).
The representation describes users’ exercise preferences and also related to their
wellness.

— Frequency domain features. It is important, to incorporate the temporal aspect of
sensor data, since the signal fluctuations during an exercise are often related to
one’s wellness attributes. However, the user’s workouts are not directly compara-
ble due to the differences in the exercise types and duration, or the inconsistency
in signal sampling rates. To incorporate the temporal aspect of sensor data with-
out binding to actual signal duration, it is useful to project time series data into
the frequency domain. To perform such a transformation, we extracted features for
each workout, in three steps as follows: (i) We applied spline interpolation to fill in
missing sensor signal measurements (in cases of sampling rate < 1Hz or when it
is inconsistent).(ii) We transformed all data points from jth workout with r sensor
signal measurements (wj,ui

= (d1, d2, ..., dr)) into relative differences between sub-
sequent sensor signal measurements: w̄j,ui

= (d2 − d1, d3 − d2, ..., dr − dr−1). (iii) We
applied Fast Fourier Transform [Bracewell 1965] followed by low band-pass-filter
(0 – 0.5 Hz) to construct the energy distribution among the 99 frequency bins for
each of five sensor signal types, namely, Altitude, Cadence, Speed, Heart Rate (HR),
and Oxygen Consumption (Oxygen). We then merged these 5 vectors together and
took an average among all workouts to obtain a frequency domain feature vector of
size 495 for each user. Such a data representation is no longer inconsistent among
different users, since it models the “changes” of sensor signal, rather than the ab-
solute values of data points. To overcome the data sparsity problem, we reduced
the frequency-domain data representation dimensionality by extracting its Top 54
principal components [Jolliffe 2002] (preserves 85% of variance) and represented
the data as: ui,SensFreqPCA = (sfPCAi,1, sfPCAi,2, ..., sfPCAi,54).

We summarize all the above features and their characteristics in Table II.

4. GLOBAL DATA ANALYSIS
To answer research question (1)17, we analyzed our data at global level by utilizing
Pearson Correlation Coefficient (r) to uncover the relationship between different data
representations and wellness attributes. Specifically, we discovered and characterized
the relationship between personal wellness attributes (BMI, “BMI Trend”) and dif-
ferent data modalities, namely text, images, locations, and sensor measurements. To

17What is the relationship between social media data representations, wearable sensor data representations,
and wellness attributes?
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Table II: Features summary

Modality Features type Dimension Red. dimension

Text
Latent topics [Blei et al. 2003] 50 50
Lexicon-based [Farseev and Chua 2017] 32 32
Writing style [Farseev et al. 2015b] 14 14

Image ImageNet concepts [Deng et al. 2009] 1000 150 (PCA)

Location Venue semantics [Farseev et al. 2015b] 764 86 (PCA)
Mobility and Temporal 12 12

Sensor

Workout semantics 96 96
Frequency domain 495 54 (PCA)
Workout statistics 10 10

do so, we highlighted significant18 correlations between different data representations
and BMI/“BMI Trend” as shown in Figures 5,6, and 7, respectively. It is noted that we
consider negative correlation to “BMI Trend” as being favorable since it means losing
weight.

4.1. Data from wearable sensors
To study sensor data, we performed correlation analysis between wellness attributes
and two types of sensor data representations: distribution among Fourier spectrum
bins and workout categories (exercise semantics).

First, it can bee seen that users’ BMI is negatively correlated to active sport types
(“Dancing”, “Running”), while positively correlated to moderately active sport types
(“Scuba Diving”, “Walking”, “Cross-Training”) (see Figure 6(b)). The possible reason
is that people with higher BMI may select less intensive workout types due to their
mobility restrictions and fitness level, while fitter ones often prefer more intensive
workouts [Jurgens et al. 2015].

At the same time, there is a significant number of frequency bins from each sensor
type that are correlated to users’ BMI (Figure 6(a)): 5 “HR” bins, 4 “Altitude” bins, 30
“Cadence” bins, 5 “Oxygen” bins, and 3 “Speed” bins. The prevalence of ”Cadence” bins
features can be explained by the relatedness of cadence to exercises’ tempo, which,
in turn, is related to the actual fitness level of users: fitter users may perform sports
activity with different intensity as compared to less fit ones. Lastly, the significant
correlation to user’ “BMI Trend” (Figure 7(a)) could be explained by the connection of
exercise intensity and energy spending, which is related to weight loss.

To summarize, both exercise semantics and frequency bins features are tightly knit
to BMI and “BMI Trend”, which can be seen from the correlation plots. Intuitively, it
can be explained by the ability of sensor data to reveal knowledge about users’ actual
physical status, which is not available from other data sources. Due to the above, it is
essential to incorporate sensor data into the learning process.

4.2. Data from social media
The Instagram image concepts “Diaper” and “Sweatshirt” are positively correlated
to users’ BMI, while “Over Skirt” and “Gown” image concepts reveal negative corre-
lation (Figure 5(a)). The possible reason might be the difference of dressing prefer-
ences between users of different BMI: users with overweight problems may take pic-
tures of themselves wearing baggy garments, while people with lower BMI may prefer
slinky clothes instead. It is also interesting to note that “Rugby Ball” and “Soccer Ball”

18We utilize the significance test with the α = 0.05 and data sample sizes are from Table I
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(a)

(b) (c)

Fig. 5: The image (a) and textual (b, c) features are significantly (α = 0.05) correlated
to users’ BMI data representations. The negative and positive correlations are colored
in red and blue, respectively.

show the highest negative correlation level to “BMI Trend”. The explanation could be
that sports activities (represented by sport-related image concepts) help users to lose
weight. Generally, it can be observed that many Instagram image concepts are sig-
nificantly correlated to personal wellness attributes. The possible reason is that these
image concepts represent wellness-related aspects of human life, such as diet, sports
activities, and dressing preferences. They are useful indicators of users’ wellness.
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(a)

(b)

Fig. 6: The sensor features are significantly (α = 0.05) correlated to users’ BMI data
representations. The negative and positive correlations are colored in red and blue,
respectively.
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(a)

(b) (c)

Fig. 7: The image (a), location (b), and sensor (c) features are significantly (α = 0.05)
correlated to users’ “BMI Trend” data representations. The negative and positive cor-
relations are colored in red and blue, respectively.

As mentioned in a previous study [Mejova et al. 2015], Foursquare data is correlated
to the country-level obesity traits. The above conforms well with our observations (Fig-
ure 7(c)), where the venue categories “Ice Cream Shop” and “Fitness Center” are sig-
nificantly correlated to the tendency of gaining/losing weight, respectively. Since many
venue categories are related to users’ dietary habits, it is necessary to utilize this data
in wellness profile learning.
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Another interesting dependency can be observed between lexicon-based text features
and the BMI category — the significant correlation between automatically extracted
(from user-generated text) food groups (“Cereal Grains and Pasta”, “Seafood”). Such
observation is also consistent with previous studies [Mejova et al. 2015; Sharma and
De Choudhury 2015; Akbari et al. 2016]. Inspired by these findings, we include text-
based features in personal wellness profile learning.

Let’s summarize the above observations. First, the global data analysis results are
consistent with previous works [Farseev et al. 2015b; Song et al. 2015a] regarding
the fact that multiple data sources describe users from different perspectives. Sec-
ond, many data representations are significantly correlated to BMI and “BMI Trend”
personal wellness attributes. At the same time, some data representations are not lin-
early correlated to them. These means that a feature selection mechanism must be
integrated into the model. Third, it can be seen that BMI index negatively/positively
correlated to numerous data representations. Essentially, this means that the data
representations expose proportional (or inversely proportional) trends to the well-
ness attributes. This suggests that the adjacent BMI categories may represent users
with similar social media behavior, which must be considered at the learning stage.
Based on the above investigations, we positively respond to the research ques-
tion (1) and conclude that it is reasonable to incorporate all the harvested
data sources into our individual wellness profiling framework.

5. INDIVIDUAL WELLNESS PROFILING
To answer research question (2), it is necessary to develop and evaluate a machine
learning solution that will fuse data from multiple social media sources and wearable
sensors for wellness attributes inference. Meanwhile, to answer research question (3),
it is essential to consider inter-category relatedness at the learning stage. In the fol-
lowing sections, we will address these issues one by one.

5.1. Problem Statement
The problem of multi-source personal user profile learning is not an easy task. First,
in many real-world scenarios, multiple data sources are sparse and block-wise incom-
plete [Song et al. 2015a], which means that some groups of users may contribute con-
tent only to certain social networks (Figure 8). Traditionally, the problem can be solved
by simply skipping incomplete data samples or by using data completion techniques
such as NMF [Paatero and Tapper 1994; Song et al. 2015a]. However, these two ap-
proaches may lead to the “curse of dimensionality” problem in the first case, and to
noise propagation in the second. To overcome these problems, it is necessary to de-
velop an efficient source fusion technique [Farseev et al. 2015b]. Second, the categories
of the wellness attributes are often inter-related. For example, the adjacent BMI cat-
egories (i.e. “Obese II” and “Obese III”) are more related to each other as compared
to those that represent completely different BMI groups (i.e. “Severe Thinness” and
“Obese III”). Such relations must be properly modeled.

In this work, we treat the problem of multi-source individual wellness attributes
inference as a multi-task learning [Caruana 1997] problem. One significant issue
in multi-task learning is how to define and employ a commonality among different
tasks [Zhao et al. 2015]. Intuitively, different data source combinations may share
common knowledge for predicting wellness attributes, and the “similar” wellness at-
tribute categories must be correspondingly represented inside the inference model. By
following this philosophy, we define a multi-task learning task as a unique combina-
tion of different sources for a given category (Figure 8), while constrain the overall
model by considering the relatedness among adjacent wellness categories.
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Table III: Adopted notations

Notation Description
N Number of exclusively labeled data samples
S(≥ 2) Number of data sources (data modalities)
G(≥ 1) Number of inference attribute categories (for BMI category, G =

8; for “BMI Trend”, G = 1)
g Inference attribute category (class). For example, “Obese” or

“Normal” in case of BMI category attribute.
T Number of multi-task learning Tasks
t A multi-task learning Task
Dt Dimensionality (feature vector dimension) of the task t
Dmax Maximum possible dimensionality of a task
Nt Number of data samples of the task t
T̂ Number of different existing combinations of sources
ft(x

t
j ; w

t) Linear prediction model for the jth data sample of task t
wt ∈ RDt Model parameter vector of task t
W All model parameters, denoted as linear mapping block matrix
Γ(W) Objective function
Ψ(X,W,Y) Loss function
Υ(W) Sparsity regularizer
Ω(W) Inter-category smoothness regularizer
ρ(s, f) Index function that denotes all the model parameters of the fth

feature from the sth source
ξ(t, g) Index function that picks up the model parameter (wt

g+1), which
corresponds to the attribute category g + 1 (adjacent to g)

Notation: In the rest of this paper, we use uppercase boldface letters (i.e. M) to denote
matrices, lowercase boldface letters (i.e. v) to denote vectors, lowercase letters (i.e. s) to
denote scalars, and uppercase letters (i.e.N ) to denote constants. For matrix M = (mi

j),

‖M‖ =
√∑n

i=1

∑m
j=1

∣∣ mi
j

∣∣2 is the `2 (Frobenius) norm, while the ‖M‖2,1 =
∑n
i=1

∥∥mi
∥∥

is the `2,1 norm [Liu et al. 2009] (mi is the ith row of the matrix M). To simplify the
reading process, we summarize all defined notations in Table III.

5.2. Modeling Multi-Source Fusion
First, we propose a sparse model that mitigates the problem of joint learning from
sensor and social media data aiming to infer BMI category and “BMI Trend” attributes.

Suppose that there is a set of N exclusively labeled data samples, S ≥ 2 data sources
(modalities), and G ≥ 1 categories of the inference attribute. We divide the dataset
into T tasks, where each task t is represented by the unique combination of available
data sources for each attribute category. The number of features of task t is denoted as
Dt; the number of data samples of task t is denoted as Nt, and the number of different
existing combinations of sources is denoted as T̂ (so that T = T̂ ×G). Formally, each of
the T tasks can be defined as a set of pairs (jth data sample xtj and its corresponding
label ytj):

t = {(xtj , ytj) | j = 1...Nt, xtj ∈ RDt , ytj ∈ {−1; 1}}19.
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Fig. 8: Incorporating block-wise incomplete data into multi-task learning model.

The prediction for jth data sample of task t is given by the linear model:

ft(x
t
j ; w

t) = xtᵀj wt,

where wt ∈ RDt is the model parameter vector of task t. In case of multi-attribute
inference, the prediction for jth data sample of task t is given by:

fCDt
(x
t∈CDt
j ) = arg max ft

t∈CDt

(xtj ; w
t),

where CDt
is the set of Dt-dimensional20 tasks. All model parameters are denoted as

the linear mapping block matrix W:

W = (w1ᵀ,w2ᵀ, ...,wTᵀ) ∈ RDmax × T .

The optimal W can be found by solving the following optimization problem:

arg min
W

Ψ(X,W,Y) + λΥ(W), (1)

where Ψ(X,W,Y) is the loss function, Υ(W) is the sparsity regularizer that selects
the discriminant features to prevent high data dimensionality [Liu et al. 2009; Akbari
et al. 2016], and λ controls the group sparsity.

The loss function Ψ(X,W,Y) term can be replaced by a convex smooth loss function.
In this work, we adopt the logistic loss:

Ψ(X,W,Y) =
1

T

T∑
t=1

1

Nt

Nt∑
i=1

log(1 + e−y
t
ift(x

t
i;w

t)). (2)

To incorporate feature selection into the objective [Liu et al. 2009], we define Υ(W)
as:

20Each inference attribute category g corresponds to kg ≤ 1 tasks of dimension Dt.
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Υ(W) =

S∑
s=1

Fs∑
f=1

∥∥wρ(s,f)

∥∥ , (3)

where Fs is the sth source feature vector dimension, and ρ(s, f) is the index function
that denotes all the model parameters of the fth feature from the sth source. The Υ
term is the `2,1 norm [Song et al. 2015a], which leads to a sparse solution (controlled
by λ ≥ 0) via constraining all models that involve source s to share a common set of
features.

5.3. Modeling Inter-Category Smoothness
The above optimization problem treats all prediction attribute categories equally,
while in real world scenario (i.e. detection of the user’s BMI category), the attribute
categories are often inter-related. For example, the adjacent BMI categories “Obese I”
and “Obese II” could be similar to each other, since users from these BMI groups may
follow similar lifestyles. To incorporate such relatedness, we additionally regularize
the model by “Inter-Category Smoothness” term, which constrains model parameters
of the adjacent attribute categories to be close to each other:

Ω(W) =

T̂∑
t=1

∑
g∈CDt

κg,ξ(t,g)

∥∥∥wt
g −wt

ξ(t,g)

∥∥∥2 , (4)

where ξ(t, g) is the index function that picks up the model parameter (wt
g+1), which

corresponds to the attribute category g + 1 (adjacent to g) from the combination of
data sources CDt

. The coefficient κg,ξ(t,g) is the pre-defined weight of the adjacent cate-
gories’ relationship. In our study, we did not incorporate weighting into category inter-
relatedness chain, due to the lack of prior knowledge:

κg,ξ(t,g) =

{
1 g = 1...G− 1;

0 g = G.
.

However, in the cases when such knowledge is available [Akbari et al. 2016; Song et al.
2015b], the weighting can be naturally introduced.

The final optimization framework that integrates data from multiple social networks
and wearable sensors, incorporates feature selection, and consider inter-category rela-
tionship, is defined as follows:

Γ(W) = arg min
W

Ψ(X,W,Y) + λΥ(W) + µΩ(W), (5)

where λ ≥ 0 and µ ≥ 0 are the model parameters that could be obtained, for example,
by performing a grid search.

5.4. Optimization
The objective function Γ(W) is not smooth, since it consists of smooth terms (Ψ, Ω)
and non-smooth term (Υ). This means that the conventional optimization approaches,
such as Gradient Decent, are not directly applicable in our case. Inspired by the fast
convergence rate of the Nesterov’s [Liu et al. 2009], we reformulate the non-smooth
problem from Eq. (5) as:
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f(W) = arg min
W∈Z

Ψ(X,W,Y) + µΩ(W)

s.t. Z =
{

W | ‖W‖2,1 ≤ z
}
, (6)

where z ≥ 0 is the radius of the `2,1-ball, and there is a one-to-one correspondence
between λ and z (proof is given in Liu et al. [2009] Sec. 4.2).

In Nesterov’s method, the solution on each step (Wi+1) is computed as a “gradient”
of a search point Si:

Wi+1 = arg min
W

Mγi,Si
(W),

Mγi,Si(W) = f(Si) + 〈∇f(Si),W − Si〉+
γi
2
||W − Si||2,

where Si is computed from the past solutions:

Si = Wi − αi(Wi −Wi−1).

where αi is the combination coefficient, and γi is the appropriate step size for Si (can
be determined by line search according to Armijo-Goldstein rule). The detailed descrip-
tion of the Nesterov’s optimization approach can be found in previous works [Liu et al.
2009; Yuan et al. 2012; Akbari et al. 2016].

5.5. On time complexity:
Since Ψ(X,W,Y), it costs O(DmaxN)) floating point operations (flops) for evaluat-
ing the function value and gradient of the objective function in Equation 6 at each
iteration [Liu et al. 2009], where Dmax and N are maximum possible dimensional-
ity of the task and number of data samples, respectively. At the same time, it was
shown [Liu et al. 2009] that the Euclidean projection, which is necessary for Nes-
terov’s optimization, can be computed in a time of O(NT ), where T is the total number
of multi-task learning “tasks”. Considering that Nesterov’s approach requires O( 1√

ε
)

iterations for achieving an accuracy of ε [Nesterov 2013], the overall time complexity
is O( 1√

ε
(DmaxN +NT )).

5.6. On data balancing:
To tackle the data imbalance problem at the training stage, we randomly and uni-
formly selected equal number of negative and positive samples for each binary clas-
sification task. In other words, to train task t (where tth feature dimension is Dt) we
used all its corresponding positive data samples and the same number of uniformly
sampled negative data samples, which were taken from other Dt-dimensional tasks.

6. EVALUATION
In this section, we present the personal wellness profiling evaluation results to an-
swer the remaining research questions. First, we compare performance of our pro-
posed framework for cases when it was trained based on different data sources and its
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Fig. 9: Distribution of users among different BMI Categories and “BMI Trends”

combinations, which helps to answer the research question (2)21. Second, we perform
evaluation against baselines, to respond the research question (3)22.

6.1. Evaluation Metrics
We explicitly evaluate the performance of our proposed “WellMTL” framework23 by
solving the problem of individual wellness profiling. Specifically, we present the infer-
ence results of two personal wellness attributes: BMI category (eight attribute classes)
and “BMI Trend” (binary classification).

The distribution of users among different BMI Categories and “BMI Trends” is pre-
sented in Figure 9. It can be seen that users are quite well distributed in all BMI cat-
egories. The highest percent of users (38%) belong to “Normal” BMI category, and the
smallest percent of users (3%) belong to “Moderate Thinness” BMI group. The above
suggests that there is enough data samples to train a supervised model for BMI cat-
egory classification task, but the evaluation must be conducted on each BMI category
separately to avoid the imbalanced datasets evaluation problem [Farseev et al. 2015b].
To avoid the prevalence of popular BMI categories in evaluation, we use “Macro-Recall”
(RMac), “Macro-Precision” (PMac), and “Macro-F1” (F1,Mac) metrics, which are the av-
eraged “Precision”, “Recall”, and “F1” measures across all categories.

6.2. Evaluation Against Individual Data Sources And Source Combinations
To study the corresponding performance of individual data sources and its com-
binations, we evaluated “WellMTL” trained on different data source permutations.
The Mobility and Venue Semantics data representations were treated as one data
source, namely, “Venue Semantics & Mobility”, since both of them were extracted from
Foursquare check-ins data. It also should be noted that we did not evaluate the “BMI
Trend” prediction performance on independent sources since there are only two users
in the test set, who have contributed data in all modalities and have been labeled with
the “BMI Trend” attribute.

First, we examine the contribution of different data sources towards user profile
learning and source integration ability. An interesting observation comes from the data

21Is it possible to improve the performance of BMI category and “BMI Trend” inference by joint modeling of
social media and sensor data?
22Is it possible to improve the performance of BMI category and “BMI Trend” inference by incorporating
inter-category relatedness into the learning process?

23α = 0.1, µ = 0.1, κg,ξ(t,g) =

{
1 g = 1...G− 1;

0 g = G.
.
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Table IV: Evaluation of the “WellMTL” framework trained on independent data sources
and its combinations. Evaluation metrics: Macro Precision, Macro Recall, Macro F1

Data Source Combination BMI category prediction
RMac/PMac F1,Mac

Visual 0.049/0.188 0.077
Venue Semantics & Mobility 0.194/0.107 0.137
Sensors 0.153/0.158 0.155
Textual 0.229/0.146 0.178
Visual + Sensors 0.174/0.201 0.186
Visual + Text 0.126/0.245 0.166
Visual + Venue Semantics & Mobility 0.161/0.154 0.157
Text + Venue Semantics & Mobility 0.160/0.204 0.179
Sensors + Venue Semantics & Mobility 0.163/0.233 0.191
Sensors + Text 0.148/0.270 0.191
Visual + Text + Venue Semantics & Mobility 0.126/0.233 0.163
Sensors + Text + Visual 0.137/0.207 0.164
Sensors + Text + Venue Semantics & Mobility 0.182/0.236 0.205
Sensors + Venue Semantics & Mobility + Visual 0.180/0.283 0.221
All Data Sources 0.214/0.292 0.246

source combination results (see Table IV), where the combinations “Sensors + Text”
and “Sensors + Venue Semantics & Mobility” return the best performance and seem to
be the most powerful among other bi-source combinations. More impressive results can
be gained from triplet combinations, where the combination “Visual + Sensors + Venue
Semantics & Mobility” perform the best. Based on these results, we can conclude that
the Sensor data is of crucial importance for individual wellness profile learning since it
is the only data source included in all best-performing data source combinations. This
observation can also be interpreted by the ability of sensor data to represent users’
actual physical condition, which is directly related to users’ BMI category and “BMI
Trend”.

Let’s now describe the single-source evaluation results (Table IV). It is interesting
to note that in the case of learning from independent data sources for the BMI cate-
gory inference task, our framework trained on Text modality performs the best, while
those trained on Sensors and Venue Semantics & Mobility data ranks 2nd and 3rd
place, respectively. First of all, the superiority of Text data over other modalities can
be explained by its quantitative dominance (see Table I). At the same time, the Sen-
sor data holds the 2nd position, which again highlights its importance. Finally, being
trained on visual data, “WellMTL” performs the worst among all other data sources,
which is consistent with current data source combination results. However, it does not
conform well with our previous study [Farseev et al. 2015b], where Visual data was
essential for Age and Gender inference. One possible explanation of the Visual data
poor performance is the high level of noise in users’ Instagram photos. At the same
time, the differences with the previous study can be interpreted by the generality of
ImageNet image concepts [Deng et al. 2009] that could be useful for the general task of
demographic attributes inference [Farseev et al. 2015b], but less effective to the more
narrow problem of individual wellness profile learning. The last observation can also
be explained by the results obtained in Buraya et al. [2017], where visual data was
observed to play an auxiliary role in the task of relationship status prediction. In con-
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Table V: Evaluation of the “WellMTL” framework trained on all data sources against
baselines. Evaluation metrics: Macro Precision, Macro Recall, Macro F1

Method BMI category “BMI Trend”
RMac/PMac F1,Mac RMac/PMac F1,Mac

MSESHC [Farseev et al. 2015b] 0.141/0.145 0.142 0.634/0.655 0.644
Random Forest 0.135/0.226 0.169 0.333/0.863 0.480
iMSF [Yuan et al. 2012] 0.171/0.174 0.172 0.649/0.649 0.649
aMTFL2 [Liu et al. 2009] 0.162/0.215 0.184 0.700/0.722 0.710

TweetF it 0.222/0.202 0.211 0.705/0.732 0.718
“WellMTL” 0.221/0.229 0.225 Ω is not applicable

clusion, we would like to highlight and suggest further usage of Text and Sensor data
sources as the strongest contributors towards individual wellness profile learning.

6.3. Evaluation Against Baselines
To compare “WellMTL” framework against state-of-the-art user profiling approaches
and answer the research questions (2) and (3), we evaluate it against the following
baselines. We note that we did not include baselines that require prior knowledge for
model guidance [Akbari et al. 2016; Song et al. 2015b] due to the unavailability of such
knowledge. It also worth noting that the inter-category relationship regularization (Ω)
is not applicable to “BMI Trend” classification since it is a binary personal wellness
attribute.

— RandomForest — strong baseline for the user profile learning [Farseev et al.
2015b]. We combined features by applying an early fusion strategy and filled in
the missing values by NMF. The number of trees was selected based on 10-fold
cross validation and equals to 105 and 25 for the “BMI category” and “BMI Trend”
inference, respectively.

— aMTFL2 [Liu et al. 2009] — the `2,1 norm regularized multi-task learning with the
least squares lost and α = 0.5.

— iMSF [Yuan et al. 2012] — the sparse `2,1 norm regularized multi-source multi-task
learning, with α = 0.4;

— MSESHC — weighted ensemble proposed in [Farseev et al. 2015b]. The
modality weights s were learned by Stochastic Hill Climbing (SHC):
s : {0.75, 0.2, 0.25, 0.45, 0.2, 0.3, 0.45, 0.2}; for venue categories, image concepts,
behavioral text, LDA 50 text, sport categories, sensors freq. bins, workout statistics,
and mobility features, respectively.

— TweetFit [Farseev and Chua 2017] — multi-source multi-task learning framework
“TweetFit” (equivalent to “WellMTL” framework, trained without inter-category
relatedness regularization (Equation 1)).

— “WellMTL” — our proposed framework trained on all data sources (Eq. 5), where

α = 0.1, µ = 0.1, κg,ξ(t,g) =

{
1 g = 1...G− 1;

0 g = G.
.

The evaluation results are presented in Table V. One can notice that the results
achieved by “WellMTL” are higher as compared to all the baselines (Table V), which
enables us to give a positive answer to research question (2). Specifically, we
conclude that it is possible to improve the individual wellness profiling performance by
integrating multiple data sources. Moreover, we note that the incorporation of inter-
category smoothness (Ω) into model further improves the performance by 1.4%, as
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compared to the model without inter-category smoothness regularization (“TweetF it”),
which gives positive response to the research question (3). The possible reason
is that “WellMTL” considers inter-category relatedness for adjacent BMI categories,
which constrains the model parameters of the corresponding adjacent BMI categories
to be “close” to each other. Consequently, similar users are treated similarly, which
allows for increasing the inference performance. At last, “WellMTL” outperforms other
state-of-the-art approaches from the multi-task learning family as well as non-linear
baselines, such as Random Forest and MSESHC [Farseev et al. 2015b]. This result
demonstrates the framework’s ability to integrate data from wearable sensors and
social media for wellness profile learning.

6.4. Error Analysis
From the previous section, it can be seen that “WellMTL” framework can achieve better
prediction performance as compared to different data source combinations and other
user profiling baselines. However, its current performance may not be sufficient for its
use in real-world scenario. To understand the reasons behind low BMI category predic-
tion performance, we present in Table VI the evaluation results of “WellMTL” frame-
work trained on all data sources with respect to each BMI category. We use Precision,
Recall, and F1 as evaluation metrics and color different BMI performance levels in Ta-
ble VI as follows: green — good performance; blue — reasonable performance; brown
— lower performance; red — low performance.

From the Table, it can be seen that two BMI categories (Normal, Pre-Obese) can be
more accurately predicted as compared to the rest. The higher performance of these
two categories prediction can be attributed by the large number of samples in these
categories, which increases the classifiers’ generalization ability. Accurate detection
of Pre-Obese category is of crucial importance in public wellness applications since
it helps to find those social media users with “obesity risk”. This allows us to offer
information support and assistance to such users, before they are deteriorated to other
obesity groups.

Another interesting observation comes from the BMI categories with comparably
“lower performance” (brown color) cover that all intermediate levels of either obesity or
thinness. It suggests that the neighboring wellness categories inside one wellness type
of overweight/underweight are not always easily separable in the social media space.
This can be explained by the similar online behavior of users with similar wellness
type. Such lower prediction performance also inspires us to develop new better social
media-separatable obesity categorization schemes in our future works.

Last but not least, we would like to highlight the comparably good performance of Se-
vere Thinness category and poor performance of Obese III category. Even though both
categories are extreme cases, the Severe Thinness category is often common among
certain categories of well-trained amateurs and sportsmen [Martinsen et al. 2010].
This implies that many users that belong to Severe Thinness category can be easier
distinguished from others by the way they perform their workouts. On the contrary,
Obese III may tend to have very few samples (as users may not wanted to reveal their
severe obesity status to public) and thus found to behave similar to other obese cases
(i.e. Obese I, Obese II) in Social Media. They are, thus, more challenging to classify.

6.5. Feature Importance Analysis
In Section 6.2, we’ve discussed the contribution of each data source and source combi-
nation towards BMI category inference. However, to boost the prediction performance,
it is often important to know which particular feature groups are useful for predict-
ing different BMI categories. To gain such understanding, in this section, we perform
feature importance analysis by eliminating features in two steps:
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Table VI: Performance of “WellMTL” framework trained on all data sources with re-
spect to each BMI category.

BMI Category % in Dataset Precision Recall F-Measure
Severe Thinness 8% 0.333 0.25 0.286
Moderate Thinness 3% 0.167 0.2 0.182
Mild Thinness 9% 0.222 0.138 0.17
Normal 38% 0.333 0.543 0.413
Pre-Obese 18% 0.371 0.277 0.317
Obese I 13% 0.125 0.176 0.146
Obese II 6% 0.182 0.111 0.138
Obese III 5% 0.095 0.082 0.088

— Correlation filtering: For each feature, we computed its linear correlation with
every other feature. We kept the feature with the largest number of correlated fea-
tures and filtered out all the correlated features. This procedure was repeated until
there are no more features with correlation higher than the threshold of σ = 0.2 was
found.

— Backward feature elimination: Each feature elimination iteration was per-
formed as follows: first, we trained binary “WellMTL”24 for each BMI category on
k input features; second, we removed one input feature at a time and trained
“WellMTL” for each BMI category on k − 1 input features k times; third, we re-
moved the input feature whose removal has produced the smallest increase in the
error rate. The total number of feature elimination iterations was: D ∗ (D + 1) ∗ G,
where D = 230 and G = 8 are respectively the data dimensionality after correlation
filtering and the number of BMI categories.

Table VII describes the usage frequency of different feature types for predicting the
BMI categories after the feature elimination procedure. Such frequency helps to gain
an insight into feature importance for predicting each BMI category. In other words,
the listed feature types are the minimal subset of features that perform the prediction
of every BMI category with the lowest error rate. The most frequently used feature
type is colored in red, while the feature types that are used by all the BMI inference
models are colored in blue.

First, it is noted that all the proposed feature types were utilized by the model for
individual wellness profiling. This is consistent with our source combination evalua-
tion results and highlights the necessity of using multi-source multi-modal data for
the task of individual wellness profiling.

Second, from Table VII, it can be seen that frequency domain features (Furrier
Transform-based features extracted from sequential workout data) and workout statis-
tics features are of crucial importance for predicting all BMI categories, while work-
out semantics features (distribution over exercise types) are weak indicators of one’s
wellness profile. The first observation conforms well with our initial assumptions and,
once again, highlights the importance of sequential sensor data for wellness profiling.
On the contrary, former observation suggests that the types of users’ workouts are in-
deed not very useful for BMI prediction, which also limits the use of exercise tracking
platforms that provide only the workout description but not the actual sensor measure-
ment data sequences (i.e. MyFitnessPal, Fitocracy) [Weber and Achananuparp 2015;
Jurgens et al. 2015; Park et al. 2016]. The above observation can be explained by the

24where α = 0.1, µ = 0, κg,ξ(t,g) = 0; g = 1...G;
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Table VII: Usage frequency of different feature types for predicting BMI categories.

Feature type S. Th. M. Th. Md. Th. Nrm. P-Ob. Ob. I Ob. II Ob. III
Latent topics 2 5 0 0 1 2 4 1
Lexicon 4 3 3 1 0 2 1 0
Writing style 2 1 1 1 0 2 1 3
Image con. 25 5 4 1 3 7 9 4
Venue sem. 19 5 1 2 11 5 11 2
Mob. & Tmp. 3 4 3 1 2 4 4 2
Work. sem. 1 0 1 0 1 2 2 2
Freq. domain 15 8 19 10 18 17 25 13
Work. stat. 1 2 2 1 1 2 2 3

strong relation of sensor measurements (intensity, speed, heart rate) to users’ actual
health status, which may not be directly related to an exercise type.

Third, we would like to highlight the importance of temporal, and venue semantics
features, which were widely used by all the prediction models. Such observation is
consistent with our source combination analysis results (see Section 6.2) as well as
the correlation analysis results (see Section 4). The importance of temporal and venue
semantics data was also mentioned in previous studies [Noulas et al. 2012; Farseev
et al. 2015b; Mejova et al. 2015] and can be explained by the major difference between
people from different BMI groups in terms of location preferences and time schedules.

Lastly, we would like to bring to attention the infrequent use of text-based features,
which could be due to the low representativeness of textual data itself, as compared to
multi-modal data [Buraya et al. 2017]. Another possible explanation is the high level
of noise in Twitter [Samborskii et al. 2016].

To summarize, we note that the results of feature importance analysis are consis-
tent with our global data analysis results (see Section 4). For example, the previously-
observed significant correlation between food groups and wellness attributes is well
aligned with the utilization of lexicon-based features for predicting the 6 BMI cate-
gories. At the same time, the significant correlation of Instagram image concepts and
venue semantics is consistent with its extensive usage by all the predictive models.
Finally, the significant correlation of multiple frequency bins has resulted in the dom-
inance of frequency domain features in the final models as compared to other feature
types. All the above, once again, highlights the significance of utilizing all data modal-
ities and sources for wellness profile learning and supports our answer to the research
question (1).

7. ON RELATIONSHIP BETWEEN DATA SOURCES
In past works [Jain and Jalali 2014; Weber and Achananuparp 2015; Farseev et al.
2016], the research community highlighted the importance to study the relationship
between different social media sources and sensors at the inter-source (cross-modal)
level. To gain more insights into such a relationship, in this section, we additionally
perform correlation analysis at the inter-source level. To do so, we extracted LDA top-
ics from each data source and modality [Vorontsov et al. 2015], where the number
of topics K is dictated by the lowest perplexity values and equals to 50, 9, 7, 6, for
Twitter, Instagram, Endomondo, and Foursquare data sources, respectively. For all
data types, we treat all user data as a document (one document corresponds to one
user) and each data unit (a word in a Twitter message, Instagram image concept,
Endomondo workout type, Foursquare venue category) as a “word”. After obtaining
the latent topics, we computed Pearson’s r between all the extracted topics, user de-
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Fig. 10: Significantly (α = 0.05) inter-source correlated data representations (matrix
1 out of 4). The negative and positive correlations are colored in red and blue, respec-
tively.

mographic attributes, temporal and mobility features. The results are presented in
Figures 10,11,12,13, where inter-source and intra-source high order relations are rep-
resented in a correlation matrix. For better readability, we name some of the extracted
topics and list them in Table VIII. To achieve better visibility, we reorder the corre-
lation matrix according to the angular order of the eigenvectors [Friendly 2002] and
highlight only significantly correlated pairs (α = 0.05) in it. Some of the strongest
significant correlations are discussed below.
Inter-Source correlation: Except the abundance of intra-source correlations, due to
obvious reasons, the strong correlation can also be observed at the inter-source level.
For example, topic 7 from Endomondo (intensive sports categories) is positively cor-
related to topic 8 from Instagram (represented by beach/leisure image concepts), but
negatively correlated to topic 28 from Twitter (one of the sport-related textual topics).
Such a relation could be hypothesized by the difference of information that users tend
to uncover in different social venues [Song et al. 2015a]: users who prefer more inten-
sive workouts may not post their sports activities on Twitter due to the nature of their
sports life, but may like to take more pictures of leisurely occasions.
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Fig. 11: Significantly (α = 0.05) inter-source correlated data representations (matrix
2 out of 4). The negative and positive correlations are colored in red and blue, respec-
tively.

Temporal dependencies: We observed that most of the important 3h time durations
(0 − 3, 6 − 9, 9 − 12, 18 − 21, 21 − 24) are significantly correlated to latent topics from
all data sources: topic 28 from Twitter and topic 3 from Endomondo are negatively
correlated to time duration 18 − 21, but positively correlated to time duration 9 − 12
[Noulas et al. 2012].
Mobility dependencies: From the correlation matrix, it can be seen that many of
user mobility representations are significantly correlated to other data modalities. For
example, the median size of users’ AOIs (the size of the area, where users are active:
“Home”, “Work”, etc. [Qu and Zhang 2013]) is significantly positively correlated to topic
34 from Twitter and to the Endomondo’s topic 4 (related to walking). The possible
reason is the difference of users’ lifestyle: users, who, on average, travel by foot more
(i.e. during the lunch break inside Work AOI) may have larger AOI size, as compared
to those who use public/private transport.
Online-to-Offline dependencies: The encouraging observations can be made from
the correlation between sensor data statistics and latent topics. Specifically, the aver-
age speed is negatively correlated to topic 0 from Foursquare and topic 14 from Twit-
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Fig. 12: Significantly (α = 0.05) inter-source correlated data representations (matrix
3 out of 4). The negative and positive correlations are colored in red and blue, respec-
tively.

ter, but positively correlated to topic 6 from Instagram. We note that the negatively
correlated topics are both related to fitness sports activities, where topic 6 from Insta-
gram is related to biking and cycling. The possible explanation could be that people
who perform stationary fitness activities are, on average, attain lower speed during
their exercises as compared to those who use bikes for workouts and transportation. It
also supports the idea that different data modalities are inter-correlated and mutually
complement each other [Farseev et al. 2015a; Farseev et al. 2015b; Song et al. 2015a],
which allows us to discover users’ activities in much wider perspective as compared to
modeling each modality independently.

Aiming to bring attention to the problem of inter-source integration, we listed some
interesting examples of inter-source data relationships above. These examples show
that even completely different, at first sight, data modalities, such as Sensor Data and
Data from Image Sharing Social Networks, are, indeed, significantly inter-correlated
to each other and, thus, must be properly integrated for joint learning purposes. Such
correlation may negatively affect linear models like in Equation 5 and may lead to
sub-optimal performance. However, considering that we applied `2,1 regularization as

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30

Fig. 13: Significantly (α = 0.05) inter-source correlated data representations (matrix
4 out of 4). The negative and positive correlations are colored in red and blue, respec-
tively.

Fig. 14: “WellMTL” framework integrated into the eTrack mobile App

feature selection mechanism (see Equation 1), we do not expect the linear correlation
between features to affect the final performance significantly.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:31

Table VIII: Terms distribution among LDA topics extracted from different data sources

Topic ID Topic Name Topic Terms (Words)
Text latent topics

14 Sport mile, do, walk, fit, train, bit, step, travel, 00s, weight
28 Sport finish, kiss, cycl, walk, 1h, bike, mountain, 2h, 3h
34 Happy follow, pleas, list, sunshin, happiest, love, girl

Foursquare venue categories latent topics
0 Sport Gym, Home, Office, Train Station, Bakery, Athletics
1 Shop Restaurant, Shop, Store, College, Place, School, Bar

Instagram image concepts latent topics
6 Biking mountain, bike, unicycle, tricycle, moped, helmet
8 Leisure bathing, sunglasses, tie, wig, sunscreen, bow, maillot

Endomondo workout categories latent topics
3 H.Int. walking, skating, gymnastics, cricket, baseball
4 M.Int. step counter, walking, tr. walking, am. football
7 H.Int. running, boxing, snow shoeing

8. APPLICATIONS
To demonstrate the applicability of the “WellMTL” framework to a real-world scenario,
it is integrated into the personal social media analytics App “eTrack”25. eTrack encour-
ages its users to be engaged in multiple Social Media and provides lifestyle-related
suggestions, which helps users to rich their healthy lifestyle goals. The structure of
the App is presented in Figure 14. From the figure, it can be seen that the data from
multiple social networks is aggregated by the “WellMTL” framework to predict “BMI
Trend” of eTrack users. This attribute then further utilised by the App to perform user
lifestyle assessment. For example, if the “BMI Trend” is predicted as “Increase” (based
on the recently generated user’s data), the App will suggest to reduce the calorie in-
take and recommend to be engaged in sports activities of the preferred type [He et al.
2016]. Additionally, users of multiple social networks are no longer required to switch
between different Apps to see recent posts and events, since the aggregated multi-
source timeline is automatically filtered and presented inside eTrack user interface.
To the best of our knowledge, eTrack is one of the first lifestyle assessment Apps that
is based on multi-source multimodal Big Data analytics.

9. LIMITATIONS AND FUTURE WORK
Although “WellMTL” outperforms the baselines, the achieved BMI prediction perfor-
mance may not be sufficient for using in real-world applications. This also highlights
BMI category inference as a challenging problem. The BMI prediction performance
improvement could possibly be achieved by applying inter-category weights (κg,ξ(t,g))
to Ω regularization term (Equation 4) or by introducing inter-source weights into the
multi-source learning objective. The inter-category and inter-source weights could be
either learned during the optimization process or could be automatically inferred from
the data [Akbari et al. 2016]. At the same time, the conducted error analysis suggests
that it could be useful to apply a different BMI categorization schema in which similar
BMI groups (i.g. Obese II and Obese III) would belong to the same inference category.
Such categorization will still be useful for most applications, while able to achieve
higher BMI Category prediction performance. Lastly, we would like to highlight the
data sparsity problem as one of the crucial issues, which has yet to be resolved. Specif-

25http://etrack.bbridge.net
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ically, we bring to attention the skew distribution of BMI categories and the insuffi-
cient number of positive samples for training some BMI category inference models (i.e.
Moderate Thinness, Obese III, Obese II). The problem could potentially be resolved by
applying data oversampling techniques, or by incorporation of external health-related
knowledge into the multi-source learning process.

Except for BMI category and “BMI Trend” prediction, the inference of other individ-
ual and group wellness attributes can be approached in future works. For example,
the so-called wellness-related hashtags could be used for users’ wellness status pre-
diction, wellness-related life events detection [Akbari et al. 2016], and chronic disease
tendency estimation. Specifically, the #bgnow hashtag could be utilized for diabetes-
related social-media content identification and individual wellness timeline construc-
tion [Akbari et al. 2016]. At the same time, such hashtags as #foodporn or #asthma
could be employed in food consumption-related research [Mejova et al. 2015] and
asthma inference-related research [Pongpaichet et al. 2013], respectively. In a real-
world scenario, such research must be conducted based on multi-source multi-modal
data [Farseev et al. 2015b; Farseev et al. 2016; Farseev and Chua 2017], which was
not broadly utilized yet and thus expected to be widely adopted in future. Lastly, we
would like to highlight that “NUS-SENSE” dataset naturally supports all the above
research directions by providing not just personal wellness and demographics ground
truth, but also the wellness-related hashtags as well as users’ sports preferences and
demographic attributes.

10. CONCLUSIONS
In this work, we presented one of the first studies on joint individual wellness profile
learning from sensor and social media data. To uncover the relationship between dif-
ferent data representations and wellness attributes, we performed an extensive corre-
lation analysis of different data representations at both inter-source and intra-source
levels. Inspired by the data analysis results, we trained the “WellMTL” framework
to predict BMI category and “BMI Trend” wellness attributes based on data from
multiple social networks and wearable sensors. The performance of the framework
was enhanced by collective data sources fusion, the introduction of sparsity into data
representations, and the novel idea of a multi-source multi-task learning via efficient
inter-category smoothness regularization. To demonstrate the advance of our frame-
work over other state-of-the-art baselines as well as gain deeper insight into wellness
profiling performance, we conducted an extensive quantitative evaluation, classifica-
tion error analysis, and feature importance analysis. Our experimental results demon-
strate the crucial importance of joint learning from multiple social media and sensor
data for individual wellness profiling, which encourages further research in this di-
rection. The successful integration of the “WellMTL” framework into personal social
media analytics App “eTrack” confirms its applicability to real-world scenarios.
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