
  

 

Abstract— Effective classification of physical exercises allows 
individuals to assess their levels of physical activity and 
functional ability for maintaining physical fitness and help 
reduce risks of chronic diseases. This paper investigates and 
compares classification techniques for detecting physical 
exercise in real-world contexts that often only supports a small 
training dataset. The system combines heart rate with other 
exercise-related features, such as distance, duration, calories, 
etc. The experiment uses a dataset of 40 realistic (uncontrolled) 
sessions from 22 individuals wearing wearable sensors while 
performing different exercises, including walking, aerobics, 
running, indoor cycling, and weight training. Based on a 5-fold 
cross validation approach, AdaBoost demonstrated the highest 
(87.25%) classification accuracy compared to other classifiers, 
including support vector machine, neural network, and binary 
decision tree when used individually. When fused together at 
the decision level using majority-voting techniques, these 
classifiers achieved higher accuracy (89.25%) than that of 
individual applications. 

I. INTRODUCTION 

While the recent advent of technologies makes people’s 
life easier and enjoyable, it also changes the lifestyle of 
people to sedentary - which is now considered as a health risk 
for people in both developed and developing countries. On 
the contrary, physical exercise has a good impact on people’s 
well-being and World Health Organization (WHO) 
recommends adults of age 18-64 to perform at least 150 
minutes of moderate-intensity or 75 minutes of vigorous-
intensity physical exercise weekly. Also, patients with certain 
diseases may require following certain well-defined 
exercises. Hence, Automatic recognition of physical activities 
can be useful for people to learn their lifestyle and set long-
term goals. 

Automatic human activity recognition research has been 
approached in two different ways – one approach is video 
observation based and another is based on wearable sensor 
data. Despite video observation based techniques [1] have 
remarkable success in this area, users’ may become unwilling 
to  be constantly kept under a video surveillance. Activity 
recognition based on wearable sensors has gained much 
attention due to the development of sensor technologies, 
which increasingly become more efficient and wearable.  
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Human activity recognition can utilize multi-modal 
sensors data, such as accelerometer, physiological, location 
and environment related data [2]. The increasing use of non-
invasive and pervasive sensors is expected to be more 
capable of capturing realistic data [3], compared to previous 
work that requires users to wear several accelerometers in 
different positions of their body [4] or recording devices that 
are uncomfortable in real-time [5]. For example, Berchtold et 
al. [6] presented human activity detection system using only a 
mobile phone’s built-in tri-axial accelerometer. In addition to 
accelerometer, physiological sensors data (e.g. heart-rate) 
could potentially reflect on a person’s internal body states, 
therefore hypothetically should have a greater role in human 
activity recognition. Most existing work that uses 
physiological cues along with accelerometer has not been 
able to accurately correlate these data with activity [4, 5]. 
Some works have recommended that physiological sensor 
data or vital sign can be exploited for better recognition 
accuracy [7-9]. In this study, we use data from multi-sensors 
that capture both physiological and contextual information.  

Designing machine learning based classifiers for human 
activity detection has been previously investigated in some 
recent work. Some studies showed decision tree classifiers as 
the best performer among base- and meta-level classification 
techniques [8], while some has found that boosting learning 
algorithm can outperform decision tree classifiers [10]. 
Single accelerometer based activity detection using decision 
tree, neural networks and support vector machine 
classification based techniques have reported high 
performance [11].  

An optimal fusion of multiple classifiers is expected to 
improve the overall classification performance, especially 
when each classifier has good performance and the range of 
the classifiers have sufficient diversity. However, the 
appropriate selection of classifiers and the performances of 
individual and fused classifiers are yet to be explored in real 
world context of physical exercise classification which may 
provide small dataset.  

To sum up, the existing challenges for accurately 
detecting activity using sensors data are: 1) data collection 
using non-invasive sensors; 2) feature extraction and 
classification, especially on smaller dataset; 3) less accuracy 
in realistic or uncontrolled settings compared to lab based 
experiments and 4) efficient multi-source multi-modal data 
fusion [9]. This paper will present results from a study to 
investigate the feasibility of four state-of-the-art classification 
techniques - including AdaBoost, support vector machine, 
neural network, binary decision tree, and their fusion - for 
effective recognition of realistic (non-laboratory based) 
physical exercise activities, including walking, aerobics, 

Automatic Classification of Physical Exercises from Wearable 
Sensors using Small Dataset from Non-Laboratory Settings 

Alok Kumar Chowdhury, Aleksandr Farseev, Prithwi Raj Chakraborty, Dian Tjondronegoro, Sr. 
Member, IEEE, and Vinod Chandran, Sr. Member, IEEE 

mailto:alok.chowdhury@qut.edu.au,
mailto:p1.chakraborty@qut.edu.au,
mailto:vinod.chandran@ieee.org)
mailto:farseev@u.nus.edu).
mailto:dian.tjondronegoro@scu.edu.au).


  

running, indoor cycling, and weight training. The 
experiments use data from 40 exercise sessions of 22 
individuals wearing non-invasive and wearable sensors, 
which capture physiological, location and environment 
related data. The proposed framework is based on the 
combination of multiple classifiers and their fusion using 
majority voting for activity classification.  

II. METHOD 

This paper focuses on the use of several classification 
techniques to recognize physical exercises, comparing the 
effectiveness of using individual or fused classifiers at the 
decision level. Figure 1 depicts the proposed framework. 

 
Figure 1.  Flow diagram of the proposed framework which was developed 

using Matlab Simulation Tool 

A. Data Collection and Pre-processing 
We’ve utilized the subset of the NUS-SENSE [12] 

dataset, which was provided in fully-anonymized form by 
NExT Research Center1 during the Web Science & Big Data 
Analytics Sumer School 20142. The data was collected from 
Endomondo3 user profiles who has publicly released their 
workouts on Twitter in the time interval between Nov 10, 
2014 and Nov 20, 2014. The above suggests the non-
applicability of the code of ethics to this research. The 
physiological sensor data was collected from wearable 
devices, while the location data was obtained from GPS-
enabled mobile phones. The weather information was 
gathered from AccuWeather weather forecast service. Table 
I shows the number of collected activities, environment type 
(indoor/outdoor) and the activity types. In total, 40 activities 
of 22 individuals from different demographic groups (males 
and females from 20 to 40 years old) were collected. The 
duration of each measurement was from half an hour to two 
hours. 

TABLE I.  TOTAL NUMBER OF USERS PER ACTIVITY 

Activity Environment Type Total Activities 

Walking Outdoor 4 
Aerobics Indoor 3 
Running Outdoor 20 

Indoor Cycling Indoor 3 
Weight Training Indoor 10 
 
In the pre-processing step, unique-value imputation [13] 

was applied on the dataset where each missing values were 
replaced by an arbitrary unique value (0). Jittering noise 
presented in heart-rate data was scaled down by a using 
moving-average filter of span 4 samples.  
B. Features Extraction 

The goal of feature extraction is to find derived values 
from the raw data intended to be non-redundant, informative 
and also usable for machine learning. This work identified 

 
1 next.comp.nus.edu.sg 
2 webscience.org/2014/10/16/web-sci-big-data-analytics-summer-school 
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total fifteen (15) features from the raw data and six (6) out of 
them were derived from heart rate.  

A Physiological signal such as heart-rate features is a  
good indicator for physical activity detection [8]. We 
computed some overall time domain features like mean and 
standard deviation for each activity using all heart rate 
samples for that activity. Adopting a similar approach [14], 
for each activity, our work also calculated several time-
varying features of heart-rate such as derivatives, gradient, 
energy, and variance. Obtained heart rate data was time 
stamped in beats-per-minute and a sliding window (with a 
span of 9 seconds) was used to compute the above temporal 
features. For computing derivative, we divided the total 
absolute difference between the neighboring heart rate 
samples by the difference of time stamped with first and last 
samples within the sliding window. The variance was 
computed by taking statistical variance of the heart rate 
samples with the sliding window using standard MATLAB 
function. We computed a series of directional values for 
increasing order of the heart rate sample (within the sliding 
window) and took the average of those directional values as 
gradient features. Energy from low frequency band (0.04-
0.15 Hz) was computed passing all the heart rate samples 
through a band-pass filter.  Finally, the average of each of 
these time-varying features is taken as features for 
classification. Apart from heart-rate features, the other 
location and environment related granular features were 
gathered: distance travelled, duration of exercise, calories 
spent, average speed, amount of hydration, minimum 
altitude, maximum altitude, wind speed, and weather type 
(e.g. sunny, cloudy, partly cloudy, night etc.). To make the 
feature set appropriate for training and classification, 
numeric unique values were assigned for the features which 
had non-numeric values. For example, we used numeric 
values 1, 2, 3, 4, 5, 6, 7 and 8 for weather types ‘Flurries’, 
‘Intermittent clouds night’, ‘Partly cloudy night’, ‘Clear 
night’, ‘Cloudy’, ‘Mostly Cloudy’, ‘Partly sunny’, and 
‘Sunny’ respectively.  

C. Feature Selection 
Not all extracted features were selected for classification; 

correlation of features with the exercises was investigated to 
find good candidate features. Features, having the absolute 
correlation coefficient greater than 0.15, were selected for 
classification.  

Due to collecting in the real context, some features 
contained a large number of missing values. As too much 
imputation on a single feature may lead to biased 
classification accuracy, we removed those features from the 
final feature set. For example, average speed feature of our 
data had over 80% missing values and not selected for 
classification. After feature selection process, following 
twelve (12) features were finally chosen for classification.  

 Heart rate features: mean, standard deviation, derivatives, 
gradient, energy, and variance. 

 Other features: distance travelled, duration of exercise, 
calories spend, amount of hydration, minimum altitude, 
and maximum altitude.             

http://www.endomondo.com


  

D. Training & Classification 
This study used the static selection of classifiers, where 

four widely used classification techniques including 
AdaBoost, Support vector machine (SVM), Neural network 
(NN), Binary decision tree (BDT) were evaluated; and also 
fused them together for physical exercise classification task. 
These classifiers are considered as state-of-the-art classifiers, 
which improves the diversity and in turn also the accuracy of 
the classification task.  

Human activity recognition works in supervised fashion 
because such system should return a label. Let the training 
data is T= {(x1, y1), (x2, y2), …, (xm, ym). Where each xi is 
the set of features and yi is the corresponding label for each 
feature set for training. In our case, each xi is the set of 
twelve features and }5,4,3,2,1{iy , where 1 to 5 are numeric 
class labels for physical exercises: walking, aerobics, 
running, indoor cycling, and weight training respectively. 
The classification problem for physical activity or exercise is 
essentially a multi-class classification problem. 

AdaBoost -We used AdaBoost.M2, multi-class 
classifier, which combines the outputs of several weak 
learners into a weighted sum and also tweaks subsequent 
weak learners based on the misclassification by the previous 
classifiers. AdaBoost is chosen because it often referred as 
best out-of-the-box classifiers and also shows less prone to 
the overfitting problem. We investigated 20, 100, 200, 1000 
cycles as learning cycles of AdaBoost, but finally set it to 
200 cycles which was optimum in our case considering both 
classification accuracy and processing time. 

SVM - Support vector machine was used to classify the 
five classes effectively. Generally, SVM classifiers can find 
the best separator between the two classes only. The two-
class SVM was adapted during this research to enable multi 
classification. Adapted SVM function works in a fashion 
that firstly it classifies one class against all other classes and 
then it classifies another classes verses remaining classes 
and so on. Linear classification function was chosen as the 
kernel function. Before applying SVM classification 
techniques, we applied principle component analysis (PCA) 
on the features (x) and a set of linearly uncorrelated 
variables (x’), i.e. principle components, were obtained. 
Then, instead of using actual features (x), the principle 
components (x’) were used for training and testing – which 
led to better classification performance for SVM.   

NN- A feed-forward neural network was used in this 
research. Neural networks have been widely used in the field 
of computer vision and speech processing and can solve 
many problems that are difficult to solve using heuristic 
rules – which lead us to choose it as a classifier in our 
problem. The inputs of the NN classifier were 12 features 
and outputs were 5 physical exercises. Hence, the neural 
network consists of 12 neurons in the input layer and 5 
neurons in the output layer. The number of neurons in the 
hidden layer was set to 5 neurons. Using the 
backpropagation training algorithm, the networks were 
trained repeatedly until the root mean square error reach to 
an optimum level.  

BDT - Binary decision tree uses hierarchical approaches 
where it divides the problem of activity recognition into 
smaller sub- problems. During training, an optimum decision 
tree was generated from the training dataset using the cross-
validation within the training data. The obtained decision 
tree was then used for classification tasks.    

E. Fusion of classifiers 
After training and testing using all four classifiers 

individually, we also combined them to achieve the 
combined accuracy. We applied Majority Voting Algorithm 
which is simplest but effective [15] to fuse the classifier’s 
results. The class, which is mostly identified by the 
individual classifiers for a test data, is selected as the final 
output. If there is a tie among the classifiers then our fusion 
chose the output of AdaBoost as the final class because of its 
better performance. 

III. EXPERIMENTAL RESULTS 

Classification results of n-class classification problem 
can be organized in a confusion matrix Mnxn where each cell 
(Mij) is the numbers of instances of class i that were actually 
classified as class j. From the confusion matrix the value of 
true-positive, true-negative, false-positive and false-negative 
can be calculated. Then, we used classification accuracy as a 
performance metric, which can be given by the following 
equation.  

%*
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During the train and test accuracy, the 5-fold cross 
validation was carried out. In 5-fold cross-validation, the 
original sample is randomly partitioned into 5 equal size 
sets. Then, a single set is used for testing and all other sets 
are used for training. Thus every set is used exactly once for 
testing. Finally, the performance metrics of each fold are 
averaged to produce a single estimated performance metric 
for the classifier. We applied random sampling of training 
sets due to small dataset and uneven distribution of available 
data for each class of activity. This is a common problem in 
real-world data collection that often cannot acquire a 
uniform number of large samples per activity. 

Table II, shows the classification accuracy of each fold 
under different classification techniques. Out of the four 
classifiers, AdaBoost provides the best classification 
accuracy (87.25%) and worst result is given by neural 
network (76.25%). Binary decision tree also shows 
outstanding 84.25% classification accuracy, which is almost 
close to AdaBoost. SVM provides 77% classification 
accuracy. We also tried to combine all four classifiers 
together using simple majority voting algorithm to learn the 
combined result. Classification accuracy of combined 
classifiers was 89.25%, which outperforms the performances 
of all individual classifiers. We also removed NN from 
fusion but it brings fusion performance down to 86.75%. 
Overall, Table II demonstrates that based on the average 
scores, fusion of classifiers has outperformed any of the 
single classifier. 

Additionally, we also compute the precision and recall to 
compute the F1-Score, reported in Table III. This was used 



  

to understand the performances of classifiers for each class. 
The results showed that combined classifiers (fusion) 
showed better F1-score for most classes compared to that of 
others. Among the single classifiers, AdaBoost performed 
well in the case of small and uneven dataset compared to the 
other three classifiers. Neural network cannot classify when 
very few numbers of training samples were available, which 
suggest that the minimum viable training sample for activity 
classification is 20 to avoid either over- or under- fitting.  
This is further supported with the patterns that can be 
observed across all classifiers: running (20 samples) 
consistently showed a higher F1-score compared to weight 
training (10 samples). 

Across all classifiers, walking has the lowest 
performance compared to the other activities as it may lack 
of distinguishable features in the small dataset. On the other 
hand, aerobics, running and indoor cycling all have high 
performance (particularly compared to weight training) 
when AdaBoost, SVM and BDT was used. This suggests 
that future data collection needs to maintain a more 
distributed balance of samples to avoid over-fit or under-fit. 

TABLE II.  CLASSIFICATION ACCURACY OF EACH FOLD-SET  

Set # 
Classification Accuracy (%) 

AdaBoos
t SVM NN BDT Fusion 

#1 80.00 75.00 87.50 81.25 87.50 
#2 87.50 75.00 68.75 81.25 87.50 
#3 87.50 85.00 81.25 90.00 90.00 
#4 87.50 68.75 75.00 87.50 87.50 
#5 93.75 81.25 68.75 81.25 93.75 
Total (avg) 87.25 77.00 76.25 84.25 89.25 

 

TABLE III.  F1 SCORE FOR EACH CLASS UNDER DIFFERENT CLASSIFICATION 

Class/ Physical 
Exercise 

F1 Score 
AdaBoost SVM NN BDT Fusion 

Walking 0.29 0.18 0 0 0.23 
Aerobics 1.00 0.83 0 0.83 1.00 
Running 0.82 0.68 0.75 0.80 0.91 

Indoor Cycling 0.53 0.50 0 0.29 0.75 
Weight Training 0.49 0.40 0.36 0.59 0.73 

 

IV. CONCLUSION & FUTURE WORK 

This study used realistic sensor data of 40 uncontrolled 
sessions from 22 individuals. Dataset was small in size and 
also contained missing values due to collecting in real 
contexts. After applying pre-processing on the raw data, we 
used total 12 features for classification models training 
where 6 features were extracted from the heart-rate signal. 
Then, we investigated four classification techniques on the 
features and also combine the classifier’s output to 
effectively recognize physical activities. The results of the 
proposed exercise classification, after applying 5-fold cross 
validation, were encouraging as the system has successfully 
classified most of the physical exercises despite having a 
small training dataset. AdaBoost showed better classification 
accuracy compared to other classifier, whereas fusion of 
multiple classifiers using majority voting has outperformed 
the performances of individual classifiers.  

This paper has shown reliable classification of exercises 
from small-sized realistic sample. Our future research will 

investigate the most effective features and sensors for 
classifying a wide variety of physical activities, which will 
benefit from both physiological and contextual data. We will 
also collect more wearable sensor data by involving 
individuals from different groups (e.g. age, gender) and 
apply our proposed multi-classification techniques to 
validate it on a larger dataset [12]. 
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