

Lab for Media Search

Social Media Computing Lecture 3: Location and Image Data Processing

Lecturer: Aleksandr Farseev

E-mail: farseev@u.nus.edu

Slides: <u>http://farseev.com/ainlfruct.html</u>

Multiple sources describe user from multiple views

More than 50% of online-active adults use more than one social network in their daily life*

*According Paw Research Internet Project's Social Media Update 2013 (www.pewinternet.org/fact-sheets/social-networking-fact-sheet/)

Multiple sources describe user from 360 °

Contents

- Color Image Representations
- Advanced Image Representations
- Location Representation

How to represent images?

what we see

what computers see

Image Feature Extraction

Simplest is as color histogram!!

Histogram Representation

- What is histogram?
 - The histogram function is defined over all possible intensity levels
 - o For 8-bit representation, we have 256 levels or colors
 - For each intensity level, its value is equal to the number of the pixels with that intensity

MATLAB function >imhist(x)

What is Histogram

 Example: Consider a 5x5 image with integer intensities in the range between of between 1 & 8, its histogram function h(r_k)=n_k is:

1	8	4	3	4
1	1	1	7	8
8	8	3	3	1
2	2	1	5	2
1	1	8	5	2

Histogram Function:	Normalized Histogram:
$h(r_1) = 8$	$p(r_1) = 8/25 = 0.32$
$h(r_2) = 4$	$p(r_2) = 4/25 = 0.16$
$h(r_3) = 3$	$p(r_3) = 3/25 = 0.12$
$h(r_4) = 3$	$p(r_4) = 3/25 = 0.08$
$h(r_5) = 2$	$p(r_5) = 2/25 = 0.08$
$h(r_6) = 0$	$p(r_6) = 0/25 = 0.00$
$h(r_7) = 1$	$p(r_7) = 1/25 = 0.04$
$h(r_8) = 5$	$p(r_8) = 5/25 = 0.20$

Examples of Image Histogram

2500

Original image

Graph of the histogram function

Observation:

- Image intensity is skewed (not fully utilizing the full range of intensities)
- What can be done??

Color Histogram -1

- Let image / be of dimension p x q
 - For ease in representation, need to quantize p x q potential colors into m colors (for m << p x q)
 - For pixel $p = (x,y) \in I$, the color of pixel is denoted by $I(p) = c_k$
- Construction of Color Histogram
 - Extract color value for each pixel in image
 - Quantize color value into one of *m* quantization levels
 - Collect frequency of color values in each quantization level, where each bin corresponds to a color in the quantized color space

Color Histogram -2

- Thus, image is represented as a color histogram H of size m
 - where H[i] gives # of pixels at intensity level I
- For example:

Into a single quantized histogram

 Normalize H to NH by dividing each entry by size of image p*q

Color Moment

- Let the set of pixel be:
 I = [p₁, p₂, ... p_R], for a total of R=(p x q) pixels
- Represent color contents of image in terms of moments:

1st Color moment (Mean):

2nd Color Moment about mean (Variance):

 $\frac{1}{R}\sum_{i}X_{i}$

$$\frac{1}{R}\sum_{i}(X_{i}-\overline{X})^{2}$$

- We can use these to model image contents
 - Advantages: Simple & efficient; Only one value for each representation
 - Disadvantage: Unable to model contents well
 - However, it can be effective at sub-image level, say sub-blocks HOW TO DO THIS??

Color Coherence Vector (CCV) -1

- Problems of color histogram rep
 - Easy to find 2 different images with identical color histogram
 - As it does not model local and location info
 - Need to take spatial info into consideration when utilizing colors:
 - Color Coherence Vector (CCV) representation

Exactly same color distribution & similar shape

- CCV
 - A simple and elegant extension to color histogram
 - Not just count colors, but also check adjacency
 - Essentially form 2 color histograms one where colors form sufficiently large regions, while the other for isolated colors

CCV Representation -2

- Example:
 - Define sufficiently large region as those > 5 pixels

- Treats H_{α} and H_{β} separately
- Similarity measure:
 - Give higher weight to Hα, as it tends to correspond more to objects

```
Sim(Q, D) = \mu Sim(Q_{\alpha}, D_{\alpha}) + (1-\mu) Sim(Q_{\beta}, D_{\beta})
```

for $\mu > 0.5$

Texture Representation

- What is texture?
 - Something that repeats with variation
 - Must separate what repeats and what stays the same
 - Model as repeated trials of a random process

- Tamura representation: classifies textures based on psychology studies
 - Coarseness
 - Contrast
 - Directionality

- Linelikeness
- Regularity
- Roughness
- Consider simple realization of Tamura features
 - May be simplified as distributions of edges or directions

Edge Representation -1

- Spatial Domain Edge-based texture histogram
 - To extract an edge-map for the image, the image is first converted to luminance Y (via Y = 0.299R+0.587G+0.114B)
 - A Sobel edge operator is applied to the Y-image by sliding the following 3×3 weighting matrices (*convolution masks*) over the image and applying (*) it on each sub segment A.

$$d_{\chi} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} *_{A} \qquad d_{\chi} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} *_{A}$$

 The edge magnitude D and the edge gradient *φ* are given by:

$$D = \sqrt{d_x^2 + d_y^2}, \quad \phi = \arctan \frac{d_y}{d_x}$$

Edge Representation -2

• Represent texture of image as 1 or 2 histograms:

Edge histogram

• Quantize the edge direction ϕ into 8 directions:

Setup *H*(Φ)
 (with 8 dimension)

Magnitude histogram

- Quantize the magnitude D into, say 16 values
- Setup *H*(*D*), with 16 dimension.
- Edge Histogram is normally used

Segmented Image Representation

- Problems with global image representation can't handle layout and object level matching very well
- One simple remedy: use segmented image (example, 4x4):

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
(3,1)	(3,2)	(3,3)	(3,4)
(4,1)	(4,2)	(4,3)	(4,4)

- Compute histograms for individual window
- Match at sub-window level between Q and D:
 - o between corresponding sub-windows or
 - o between all possible pairs of sub-windows
 - o May give higher weights to central sub-windows
- Pros: able to capture some local information
- Cons: more expensive, may have mis-alignment problem

Metadata of Images

- Cameras store image metadata as "EXIF tags"
 - EXIF (Exchangeable image file format)
 - Timestamp, focal length, shutter speed, aperture, etc
 - Keywords can be embedded in images

Metadata of Images -2

- Other form of metadata: semantic tags (or concepts)
 - Supply manually by users
 - Reasonable thru social tagging
- With metadata, we can perform advanced analysis:
 - Use existing set of semantic tags
 - Automatic keyword generation (leveraging on EXIF info)
 - Camera knows when a picture was taken...
 - A GPS tracker knows *where* you were...
 - EXIF knows the conditions that picture was taken
 - Your calendar (or phone) knows *what* you were doing...
 - Combine these together into a list of keywords

Contents

- Color Image Representations
- Advanced Image Representations
- Location Representation

Scale Invariant Feature Transform (SIFT) descriptor -1

- Basic idea: use edge orientation representation
 - Obtain interest points from scale-space extrema of differences-of-Gaussians (DoG)
 - Take 16x16 square window around detected interest point
 - Compute edge orientation for each pixel
 - Throw out weak edges (threshold gradient magnitude)
 - Create histogram of surviving edge orientations

http://www.scholarpedia.org/article/Scale_Invariant_Feature_Transf

Detected Interest Points

Scale Invariant Feature Transform (SIFT) descriptor -2

- A popular descriptor:
 - Divide the 16x16 window into a 4x4 grid of cells (we show the 2x2 case below for simplicity)
 - Compute an orientation histogram for each cell
 - 16 cells X 8 orientations = 128 dimensional descriptor

Scale Invariant Feature Transform (SIFT) descriptor -3

- Invariant to
 - Scale
 - Rotation
- Partially invariant to
 - Illumination changes
 - Camera viewpoint
 - Occlusion, clutter

Examples of SIFT matching

80 matches

34 matches

- Text Words in Information Retrieval (IR)
 - Compactness
 - Descriptiveness

• Can images be represented as Bag-of-Visual Words?

 Idea: quantize SIFT descriptors of all training images to extract representative visual words!

Step 1: Extract interest points of all training images

Step 2: Features are clustered to quantize the space into a discrete number of visual words.

Hierarchical Kmeans clustering

Get the final visual word Tree

Step 3: Summarize (represent) each image as histogram of visual words

and use as basis for matching and retrieval!

Another example:

Visual words codebook

What do we mean by "Concept Recognition"

Verification: Is that a statue of rabbit?

Detection: Are there trees?

Identification: Is that the merlion, Singaore's Iandmark?

Object Categorization

Scene and Context Categorization

Concept Recognition: Challenges

- View point variation
- Illumination
- Occlusion
- Scale
- Deformation
- Background clutter

Concept Recognition: Bag-of-Word Model

BASIC IDEA:

- Representative set of images in each category is collected
- An image is represented by a collection of "visual words"
- Object categories are modeled by the distributions of these visual words

Concept Recognition: Discriminative Model

- Object detection and recognition is formulated as a classification problem. The image is partitioned into a set of overlapping windows, and a decision is taken at each window about if it contains a target object or not.
- Each window is represented by a large number of features that encode info such as boundaries, textures, color, spatial structure.
- The classification function, that maps an image window into a binary decision, is learnt using methods such as SVMs or neural networks

Contents

- Color Image Representations
- Advanced Image Representations
- Location Representation

Location-Based Social Networks

 People want to share their geographic position with their friends.

Foursquare: Main Player in LBSN market

• After five years of intense crowdsourcing that generated billions of check-ins, Foursquare is evolving to become the search engine of the city.

Sensing the City

- Istabul: <u>https://www.youtube.com/watch?v=pnkD7OnvCgY</u>
- London: <u>https://www.youtube.com/watch?v=gsXs5TEPzRM</u>
- Tokyo: <u>https://www.youtube.com/watch?v=jtwzADysoMQ</u>

45

The Multi-Dimensional Check-In

SAVE

Mayor John R. 3 pheck-ins in last 60 days

58

Do you manage this versar? Claim News

YOUR

CHIECK-INK

0

DEDN HORE

TOTAL

CHECK-INS

85

Examples of 4sq users' activities

48

Large scale: Global User Mobility Analysis

Global distribution of sampled Foursquare venues. Colors represent the popularity of venues with "red": # check-ins > 100, "green": $50 \le #$ check-ins ≤ 100 and "blue": $10 \le #$ check-ins < 50.

- Effectiveness of each feature over time changes.
 - Predictions are more accurate at noon than in the evening
 - Predictions for Physical & Rank distances reverse -- users cover shorter distance at night
 - Predictions for Historical Visits & Place Transition drop significantly over weekends
 - whereas Categorical Preference, Place Popularity & distance based features are more stable

*A Noulas S Scellato, N Lathia & C Mascolo (2012). Mining User Mobility Features for Next Place Prediction in Location-based Services. IEEE Int'l Conf. on Data Mining (ICDM), Dec 2012.

Map all Foursquare check – ins to Foursquare categories from category hierarchy.

For case when user performed check-ins in two restaurants and airport but did not perform check-ins in other venues:

	Category ₁		Category _{restaurant}	••••	Category _{airport}		Category _n
U ₁	0	0	2	0	1	0	0
	*	*	*	*	*	*	*
U _n	*	*	*	*	*	*	*

- 1. Map all Foursquare check ins to Foursquare venue categories from category hierarchy.
- 2. Form user related documents, containing venue categories of every check-in
- 3. Apply LDA on it represent as distribution among n latent topics, where Users documents, words Foursquare venue categories

	LDA ₁	LDA ₂	LDA ₃		LDA _n
U ₁	0.05	0.4	0.1	0.35	0.1
	*	*	*	*	*
U _n	*	*	*	*	*

Category distribution among LDA topics					
ID	Categories	LDA Topics			
T1	Malay Res-t, Mall, University, Indian	Food Lovers			
	Res-t, Aisian Res-t				
T2	Cafe, Airport, Hotel, Coffee Shop,	Travelers			
	Chinese Res-t	(Business)			
T3	Nightclub, Mall, Food Court, Trade	Party Goers			
	School, Res-t, Coffee Shop				
T4	Home, Office, Build., Neighbor-d,	Family Guys			
	Gov. Build., Factory	(Youth)			
T5	University (Collage), Gym, Airport,	Students			
	Hotel, Fitness Club				
T6	Train St., Apartment, Mall, High	Teenagers			
	School, Bus St.	(Youth)			

User 3 User 2 Shoppers Food Lovers Students Teenagers User 1 Professionals Party-goers 0.2 0.0 0.1 0.3 0.4 0.5 0.6 Proportion

LDA word distribution over 6 topics for collected Foursquare check-ins.

Every venue category is considered as a word, each Foursquare user as a document

Summary

- Data from different sources describe users from multiple aspects – must incorporate different data modalities
- Images could be represented in different ways:
 - Color Histograms (consider just colors)
 - CCV vectors (consider colours and it's mutual position)
 - Textures (consider repeated patterns)
 - Edges (consider edges)
 - Visual words (consider scale invariant (SIFT) features)
 - Concepts (consider high level image concepts)
 - Meta Information
- Locations are not just locations (lon, lat) but also Location Semantics (venue categories)
- Locations could be represented in different ways:
 - Venue categories distribution
 - Latent topics
 - Mobility features (Spatial Temporal aspect)

Next Lesson

Introduction to Classification

Assignment -1

- DATASET:
- <u>http://lms.comp.nus.edu.sg/</u> <u>research/NUS-</u> <u>MULTISOURCE.htm</u>
- DESCRIPTION OF THE DATA IS IN PAPER*.
- Please, ask any questions during the conference and after: farseev@u.nus.edu

*Aleksandr Farseev, Liqiang Nie, Mohammad Akbari, and Tat-Seng Chua. 2015. *Harvesting Multiple Sources for User Profile Learning: a Big Data Study* In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval (ICMR '15).

Assignment -2

• All slides and will be here:

- http://farseev.com/ainlfruct.htm

- Recommended software to use:
 - KNIME (No programming required) https://www.knime.org/
 - Python and it's Machine Learning Support
 - Any other language you like. Just make it work ;)