

ΤΟΚΥΟ • JΑΡΑΝ

Cross-Domain Recommendation via Clustering on Multi-Layer Graphs

Aleksandr Farseev, Ivan Samborskii, Andrey Filchenkov, Tat-Seng Chua

By Aleksandr Farseev <u>http://farseev.com</u>

Aug 8th, 2017

Venue Category Recommendation

Collaborative Venue Category Recommendation – recommendation of venue categories (i.e. restaurant, cinema) to user using information about his/her profile (i.e. past visits) and/or information about users from the same domain.

Venue categories: Venue categories: Venue categories: Clothing Store Hotel Ice Cream Shop National H University Hospital H Kent Ridge CC24 Total 764 different categories

Junior College

One-North

Dover Dr

Tolliroad

Idea 1: Utilization of Individual And Group Knowledge for Better Recommendation

User Community-Based Collaborative Recommendation

We perform venue category recommendation based on both individual and group knowledge =>

naturally models the impact of society on an individual's behavior during the selection of a new place to go:

$$rec(u) = sort\left(\gamma \cdot vec_u + \theta \frac{\sum_{v \in C_u} vec_v}{|C_u|}\right)$$

What do we need user communities for?

+ Users from the same community (extracted from multi-source data) may have similar location preferences

+ Search within user community significantly reduces search space during the recommendation process

Example of User Communities (1)

Community 1: Gingers

Community K: Darker Hair

User Relation and Community Representations

One way to find user communities is to model users' relationships in the form of a graph so that dense subgraphs are considered to be user communities.

Community Detection based on a single data source

One of the commonly formulations is **MinCut** problem.

For a given number k of subsets, the MinCut involves choosing a partition C_1, \ldots, C_k such that it minimizes the expression:

$$cut(C_1,\ldots,C_k) = \sum_{i=1}^k W(C_i,\bar{C_i})$$

*W is the sum of weights of edges attached to vertices in C_i

How to solve MinCut problem?

Approximation of MinCut as standard trace minimization problem:

 $\min_{U \in \mathbb{R}^{n \times k}} \operatorname{tr}(U^T L U), \text{ s. t. } U^T U = I$

which can be solved by Spectral Clustering:

- 1. Calculates Laplacian matrix $L \in \mathbb{R}^{n \times n}$ 2. Builds matrix of the first k eigenvectors $U \in$ $R^{n \times k}$ correspond to the smallest eigenvalues of L
- 3. Clusters data in a new space U using i.e. k-means algorithm

Idea 2: Utilization of Multi-Source Data

Most of user actively use \approx 3 social networks

* GlobalWebIndex. 2016. GWI Social report. http://www.globalwebindex.net/blog/internet-users-have-average-of-5-social-media-accounts

Multi-source data describe user from multiple views

Cross-Domain Venue Category Recommendation

Cross Domain - Venue category recommendation – recommendation of venue categories (i.e. restaurant, cinema) using information about his/her profile (i.e. past visits) and/or information about users from other sources (i.e. images, texts, location types).

> Venue categories: Clothing Store Hotel Ice Cream Shop

Multi-Source Data:

Community Detection must performed in a Cross-Source Manner...

Problems:

- Data source integration
- Community detection

How to represent multi-source data?

Multi-layer graph – graph G, where $G = \{G_i\}, G_i = (V, E_i)$

Extending definition of spectral clustering

$$\min_{U \in \mathbb{R}^{n \times k}} \sum_{i=1}^{M} \operatorname{tr}(U^{T} L_{i} U), \text{ s.t. } U^{T} U = I$$

$$\min_{U \in \mathbb{R}^{n \times k}} \operatorname{tr}(U^T L_{sum} U), \text{ where } L_{sum} = \sum_{i=1}^{M} L_i$$

Such approximation could suffer from **poor generalization ability**.

Regularized Clustering on Multi-layer Graph -1

Use Grassman Manifolds to keep final latent representation "close" to all layers of multi-layer graph*. Where projected distance between two spaces Y_1 and Y_2 :

* X. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov. Clustering on multi-layer graphs via subspace analysis on grassmann manifolds. IEEE Transactions on Signal Processing, 2014.

Regularized Clustering on Multi-layer Graph -2

Extends the objective function to introduce the subspace analysis regularization

$$\min_{U \in \mathbb{R}^{n \times k}} \sum_{i=1}^{M} \operatorname{tr} \left(U^{T} L_{i} U \right) + \alpha \left(kM - \sum_{i=1}^{M} \operatorname{tr} \left(UU^{T} U_{i} U_{i}^{T} \right) \right), \text{ s.t. } U^{T} U = I$$
$$\min_{U \in \mathbb{R}^{n \times k}} \operatorname{tr} \left(U^{T} L_{mod} U \right)$$
$$L_{mod} = \sum_{i=1}^{M} (L_{i} - \alpha U_{i} U_{i}^{T})$$

Idea 4: Making use of Inter-Layer (Inter-Source) Relations

Incorporating inter-layer relationship (1)

By using distance on Grassman Manifolds, we present the new objective function for the *i*th layer:

$$\begin{split} \min_{\widehat{U}_i \in \mathbb{R}^{n \times k}} \operatorname{tr}(\widehat{U}_i^T L_i \widehat{U}_i) + \beta_i \left(kM - \sum_{j=1, j \neq i}^M w_{i,j} \operatorname{tr}(\widehat{U}_i \widehat{U}_i^T U_j U_j^T) \right) \\ \min_{\widehat{U}_i \in \mathbb{R}^{n \times k}} \operatorname{tr}(\widehat{U}_i^T \widehat{L}_i \widehat{U}_i) \\ \widehat{L}_i = L_i - \beta_i \sum_{j=1, j \neq i}^M w_{i,j} \operatorname{tr}(U_j U_j^T) \end{split}$$

But how can we determine $w_{i,j}$ when computing *i-th* layer ?

$$\min_{\widehat{U}_i \in \mathbb{R}^{n \times k}} \operatorname{tr}\left(\widehat{U}_i^T \widehat{L}_i \widehat{U}_i\right)$$
$$\widehat{L}_i = L_i - \beta_i \sum_{\substack{j=1, j \neq i}}^M w_{i,j} \operatorname{tr}\left(U_j U_j^T\right)$$

Inter-layer relationship graph R(V, E) – weighted graph which represents the similarity between layers.

$$\forall (i,j) \in E, w_{i,j} = \frac{\sum_{k=2}^{K} \left(1 - \frac{\|M_{i,k} - M_{j,k}\|}{\sqrt{N(N-1)}}\right)}{K-1}$$

where $M_{i,k}$ is clustering co-occurrence matrix of layer *i*, $m_{a,b} = 1$, if users *a* and *b* assigned to the same cluster, and **0** otherwise.

Final objective function

Let's combine equations from previous slides to define the final objective function:

$$\lim_{U \in \mathbb{R}^{n \times k}} \sum_{i=1}^{M} \operatorname{tr} \left(U^{T} \hat{L}_{i} U \right) + \alpha \left(kM - \sum_{i=1}^{M} \operatorname{tr} \left(UU^{T} \hat{U}_{i} \hat{U}_{i}^{T} \right) \right) =$$
$$= \min_{U \in \mathbb{R}^{n \times k}} \operatorname{tr} \left(U^{T} \sum_{i=1}^{M} (\hat{L}_{i} - \alpha \hat{U}_{i} \hat{U}_{i}^{T}) U \right)$$

Problems

Community detectionData source integration

Recall: Community-Based Cross-Domain Recommendation

We perform venue category recommendation based on both individual and group knowledge, where group knowledge is obtained from multiple sources:

Foursquare

Twitter

Ξ

NUS-MSS Dataset

Dataset* is presented as a set of features, extracted from user-generated data in three social networks: text based from Twitter (LDA, LIWC, text features)

- image based from Instagram (concepts)
- location based from Foursquare (LDA, categories, Mobility Features)

Foursquare categories is splited into two parts: 3 months data (train) and 2 months (test).

* A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

Data Sources

Linguistic features: LIWC; Latent Topics Heuristic features: Writing behavior

Location Features:

Location Semantics: Venue Category Distribution Mobility Features: Areas of Interest (AOI)

Image Features

Image Concept Distribution (Image Net)

Mobility Loo

Location Type Preferences

Image Concepts

Images

Evaluation Baselines

Recommender Systems

Popular (POP) — recommendation based on user's past experience

Popular All (POP All) – recommendation based on experience of all users

Multi-Source Re-Ranking (MSRR) – linearly combines recommendation results from all data modalities

Nearest Neighbor Collaborative Filtering (CF) – recommendation based on top k most similar Foursquare users

Early Fusion (EF) – fuses multi-source data into a single feature vector

SVD++ - makes use of the "implicit feedback" information

FM— brings together the advantages of different factorizationbased models via regularization.

Community Detection Approaches

 $\mathbf{C^3R}$ – $\mathbf{\hat{L}_i}$ – $\mathbf{C^3R}$ recommendation without inter-layer regularization

 C^3R – \hat{L}_i - \hat{L}_{Mod} – C^3R recommendation without inter-layer regularization and sub-space regularization

 $C^{3}R$ -*Comm* – $C^{3}R$ recommendation without user community extraction

 $C^{3}R$ (DBScan) – $C^{3}R$ recommendation, where user communities are detected by Density-Based clustering (DBScan)

 $C^{3}R$ (x-means) – $C^{3}R$ recommendation, where user communities are detected by x-means clustering

 $C^{3}R$ (Hierarchical) – $C^{3}R$ recommendation, where user communities are detected by Hierarchical Clustering

 C^3R – Our Approach

Evaluation against other recommender systems

p

Evaluation against other community detection approaches

- + Incorporation of group knowledge is is important
- + Multi-modal clustering performs better than single-source clustering
- + Incorporation of Inter-Source relationship is crucial.

Evaluation against source combinations

- + In different geo regions, different data sources are of different importance
- + Location data is more powerful than other data modalities

	(_		_	mob \
$W_R =$	tw	1	0.632	0.621	0.643	$\begin{array}{c} 0.561 \\ 0.570 \end{array}$
	4sq	0.632	1	0.614	0.631	0.570
	\mathbf{inst}	0.621	0.614	1	0.621	0.551
	tmp	0.643	0.631	0.621	1	0.560
	\ mob	0.561	0.570	0.551	0.560	$\left(\begin{array}{c} 0.560\\1\end{array}\right)$

Examples of detected user communities

Name	Bag of Words for different modalities					
Name	Text	Visual	Location			
Gadgets	device,	mouse, digital	electronics store, tech			
832	launcher,	clock, hard	startup, technology			
users	android	disc	building			
Arts	painting,	obelisk, paint-	arts & crafts store,			
538	landscape,	brush, pencil	arts & entertainment,			
users	reflection	box	museum			
Food	dining, cof-	pineapple, mi-	italian restaurant,			
446	fee, cook-	crowave, fry-	pizzeria, macanese			
users	ing	ing pan	restaurant			

Future Work

Community Detection is more useful when it is Source-Dependent

=> Introduce Supervision Into Clustering

How?

- Graph Construction Level reweight edges according to prior knowledge about existing user communities
- Model Level introduce community-related constraints into clustering

Summary

+ Multi-View Data is crucial for User Community Detection

- + For the task of venue category recommendation, both Group And Individual Knowledge are Important
- + Venue Category Recommendation is not a conventional recommendation task: users visit many venue types from the past. (items from the train set often occur in test set)

The Released Datasets

http://nusmss.azurewebsites.net

http://nussense.azurewebsites.net

NUS-MSS

NUS-SENSE

Our Tutorial on Multi-View Learning @ WST WSSS'17 http://tutorial.farseev.com

Thank You

Questions?

By Aleksandr Farseev <u>http://farseev.com</u>

Normalized Discounted Cumulative Gain (NDCG) measure, which is defined as:

$$NDCG@p = \frac{DCG@p}{IDCG@p}, DCG@p = \sum_{i=1}^{p} \frac{2^{rel_i}}{\log_2(i+1)}, rel_i = \frac{Cat_i}{N_{Cat}},$$

Average Precision (AP), which is defined as:

$$AP@p = \frac{1}{\sum_{i=1}^{p} r_i} \sum_{i=1}^{p} r_i \left(\frac{\sum_{j=1}^{i} r_j}{i} \right), r_i = \begin{cases} 1, & \text{i is in top p visited cat.} \\ 0, & \text{otherwise.} \end{cases}$$