
Social Media Computing

Lecture 5: Source

Fusion and Evaluation

Lecturer: Aleksandr Farseev

E-mail: farseev@u.nus.edu

Slides: http://farseev.com/ainlfruct.html

mailto:farseev@u.nus.edu
http://farseev.com/ainlfruct.html

References

• Freund, Y., & Schapire, R. E. (1996). Experiments with a

new boosting algorithm. In ICML (Vol. 96, pp. 148-156).

• Kuncheva, L. I. (2004). Combining Pattern Classifiers.

Wiley Interscience,.

Contents

• Multi-source heterogeneous data

• Data Fusion Techniques

• Evaluation Measures

• Summary

Knowledge in Social Media Content

Tweet

• Features
– Short contents (<140w)

– Unstructured

• Casually written

– Social

• re-tweet, @people

• follower/followee

• Sites
content

Community QA

• Features
– Focused contents

– Semi-structured

• Question & Answer

• Rating, tag, category

– Interactive

• Sites

Question

Question Description

Answer

Rating

Tag

Blog

• Features
– Rich contents

– Simple structure

• Title & Content

– Authoritative

• Sites

Title

Conten

t

Online Encyclopedia

• Features
– High-quality contents

– Established topics

– Very limited data size

– Structure

• Infobox (Wikipedia)

• Fact entry (Freebase)

• Sites

Image Sharing Services

• Features
– Color-based features

– SIFT

– Visual concepts distribution

– Color moments

– Edge distribution

– Deep features (DNN)

• Sites

Location-Based Social

Networks
• Features

– Venue Semantics

– Mobility features (movement patterns, areas of

interest)

– Temporal features

• Source

Sensor Data

• Features
– Frequency domain features

– Statistics feature

– Activity semantics

• Source – Fitness Pal

Source fusion

• Given a set of k data sources, the role of source fusion

is to combine these sources in one model to solve a

classification, regression or ranking task.

Data

sources

Feature

vectors

Classification

model

Contents

• Multi-source heterogeneous data

• Data Fusion Techniques

– Early source fusion strategy

– Late source fusion strategy

• Evaluation Measures

• Summary

Early source fusion strategy

• Feature vectors from each of k sources are

concatenated into one feature vector; and used for

model training

• The required number of samples (to achieve the same
accuracy) grows exponentially with the number of
variables!

• In practice: number of training examples is fixed!

=> the classifier’s performance usually will degrade with a large

number of features!

In many cases the information

that is lost by discarding variables

is made up for by a more

accurate mapping/ sampling in

the lower-dimensional space !

Curse of dimensionality

Solution to:
Curse of dimensionality problem

Feature Selection

• Given a set of n features, the role of feature selection

is to select a subset of d features (d < n) in order to

minimize the classification error.

• Many techniques have been introduced, including:

• Feature selection methods, such as correlation based

• Dimensionality reduction methods (e.g., PCA or LDA) based

on feature projection to new space

• Train Classifier based on feature set

dimensionality

reduction

Contents

• Multi-source heterogeneous data

• Data Fusion Techniques

– Early source fusion strategy

– Late source fusion strategy

• Summary

Ensemble Learning

• So far, we introduce learning methods that learn a single

hypothesis, chosen from a hypothesis space that is used

to make predictions.

• Ensemble learning select a collection (ensemble) of

hypotheses and combine their predictions.

• Example: generate 100 different decision trees from the

same or different training set and have them vote on the

best classification for a new example.

• Key motivation: reduce error rate.

Hope is that it will be much more unlikely that the

ensemble of methods will misclassify an example.

General Learning Ensembles
• Learn multiple alternative definitions of a concept

using different training data or different learning

algorithms.

• Combine decisions of multiple definitions, e.g. using

weighted voting.
Training Data

Data1 Data mData2        

Learner1 Learner2 Learner m       

Model1 Model2 Model m       

Model Combiner Final

Model

Value of Ensembles

• “No Free Lunch” Theorem

– No single algorithm wins all the time!

• When combing multiple independent and diverse

decisions each of which is at least more accurate than

random guessing, then random errors may cancel each

other out, reinforcing correct decisions

Example: Weather Forecast

Reality

1

2

3

4

5

Combine

X X X

X X X

X X X
X X

X X

• Majority vote

• Suppose we have 5 completely independent classifiers,

then based on binomial distribution theory, we have…

– If accuracy is 70% for each classifier:

• (.75)+5(.74)(.3)+ 10 (.73)(.32)

• 83.7% majority vote accuracy

– 101 such classifiers:

• 99.9% majority vote accuracy

– But if the accuracy is less than 50% for each classifier, would the

above still holds?

Intuitions

Note: Binomial Distribution: The probability of observing x heads in a sample of n independent

coin tosses, where in each toss the probability of heads is p, is:

Ensemble Learning

• Another way of thinking about ensemble learning:

•  way of enlarging the hypothesis space, i.e., the

ensemble itself is a hypothesis and the new hypothesis

space is the set of all possible ensembles constructible

from hypotheses of the original space.

Increasing power of ensemble

learning:

• Three linear threshold hypothesis (positive

examples on the non-shaded side);

• Ensemble classifies as positive for any

example that are classified positively for all

three;

• The resulting triangular region hypothesis is

not expressible in the original hypothesis

space.

Different Learners

1) Different learning algorithms

2) Algorithms with different choice for parameters

3) Data set with different features

4) Data set = different subsets

1) Ensemble with Multiple Learning

Algorithms
• Learn multiple classifiers using different learning

algorithms

• Can combine decisions of multiple classifiers using:

– Majority voting

– Weighted voting

Training Data

Learner 1 Learner 2 Learner m      


Model1 Model2 Model m       

Model Combiner Final

Model

Model Combinations:
Majority Vote

Model Combinations:
Weighted Majority Vote

2) Homogenous Ensembles

• Use a single, arbitrary learning algorithm but manipulate

training data to make it learn multiple models.

– Learner1 = Learner2 = … = Learnerm

– Data1  Data2  …  Datam

• Different methods for changing training data:

– Bagging: Resample training data

– Boosting: Reweight training data

2a) Bagging

• Bagging is a “bootstrap” ensemble method that creates

individuals for its ensemble by training each classifier on

a random redistribution of the training set
– Draw N items from D with replacement

(means samples drawn can be repeated)

Figure taken from: http://cse-wiki.unl.edu/wiki/index.php/Bagging_and_Boosting

Bagging - Aggregate Bootstrapping

• Given a standard training set D of size n

• For i = 1 .. M

– Draw a sample of size n*<n from D uniformly and with

replacement

– Learn classifier Ci

• Final classifier is a vote of C1 .. CM

– By simple majority votes

• Increases classifier stability/reduces variance

• Create ensembles by “bootstrap aggregating”, i.e.,

repeatedly randomly resampling the training data

(Brieman, 1996).

Properties of Bagging

• Breiman (1996) showed that Bagging is effective on

”unstable'' learning algorithms, where small changes in

the training set result in large changes in predictions.

– Examples of unstable learners include decision trees and neural

networks)

• It decreases the error by decreasing the variance in the

results due to unstable learners

• It may slightly degrade the performance of stable

learning algorithms, such as kNN.

2b) Boosting

• Weak Learner: only needs to generate a hypothesis

with a training accuracy greater than 0.5, i.e., <

50% error over any distribution

• Learners

– Strong learners are very difficult to construct

– Constructing weaker Learners is relatively easy

• Question: Can a set of weak learners create a

single strong learner?

YES 

Boost weak classifiers to a strong learner

Strong and Weak Learners

• Strong Learner Objective of machine learning

– Take labeled data for training

– Produce a classifier which can be arbitrarily accurate

• Weak Learner

– Take labeled data for training

– Produce a classifier which is more accurate than random

guessing

Boosting
• Originally developed by computational learning theorists

to guarantee performance improvements on fitting

training data for a weak learner that only needs to

generate a hypothesis with a training accuracy greater

than 0.5 (Schapire, 1990).

• Revised to be a practical algorithm, AdaBoost, for

building ensembles that empirically improves

generalization performance (Freund & Schapire, 1996).

• Key Insights

– Instead of sampling (as in bagging), re-weigh the examples.

– Examples are given weights. At each iteration, a new hypothesis

is learned (weak learner) and the examples are reweighted to

focus on examples that the most recently learned classifier got

wrong.

– Final classification based on weighted vote of weak classifiers

AdaBoost: High Level Algorithm

• Many variants depending on how to set the weights and how to

combine the hypotheses.

Construct weak classifiers

Combine weak classifiers

Construct Weak Classifiers

• Using Different Data Distribution

– Start with uniform weighting

– During each step of learning

• Increase weights of the examples which are not correctly

learned by the weak learner

• Decrease weights of the examples which are correctly

learned by the weak learner

• Idea

– Focus on difficult examples which are not correctly

classified in the previous steps

Combine Weak Classifiers

• Weighted Voting

– Construct strong classifier by weighted voting of weak

classifiers

• Idea

– Better weak classifier gets a larger weight

– Iteratively add weak classifiers

• Increase accuracy of the combined classifier through

minimization of a cost function

How Does Adaptive Boosting

Works

• Each rectangle corresponds to

an example,

• with weight proportional to its

height.

• Crosses correspond to

misclassified examples.

• Size of decision tree indicates

the weight of that hypothesis in

the final ensemble.

Performance of AdaBoost
• Learner = Hypothesis = Classifier

• Weak Learner: < 50% error over any distribution

• M: number of hypothesis in the ensemble.

• If the input learning is a Weak Learner, then AdaBoost

will return a hypothesis that classifies the training data

perfectly for a large enough M,

• Boosting the accuracy of the original learning algorithm

on the training data.

• Strong Classifier: thresholded linear combination of

weak learner outputs.

2c) Random Forest

• Ensemble consisting of a bagging of un-pruned

decision tree learners with a randomized selection

of features at each split.

• Grow many trees on datasets sampled from the

original dataset with replacement (a bootstrap

sample).

o Draw K bootstrap samples of a fixed size

o Grow a DT, randomly sampling a few

attributes/dimensions to split on at each internal node

• Average the predictions of the trees for a new query

(or take majority vote)

• Random Forests are state of the art classifiers!
41

Randomness in Random Forests

• Introduce two

sources of

randomness:

“Bagging” and

“Random input

vectors”

– Each tree is grown

using a bootstrap

sample of training

data

– At each node, best

split is chosen from

random sample of

mtry variables

instead of all

variables

Random Forest:
practical consideration

• Splits are chosen according to a purity measure:

– E.g. squared error (regression), Gini index or deviance

(classification))

• How to select N?

– Build trees until the error no longer decreases

• How to select M?

– Try to recommend defaults, half of them and twice of them

and pick the best.

Random Forest:
Features and Advantages

The advantages of random forest are:

• It is one of the most accurate learning algorithms available. For

many data sets, it produces a highly accurate classifier.

• It runs efficiently on large databases.

• It can handle thousands of input variables without variable

deletion.

• It gives estimates of what variables are important in the

classification.

• It generates an internal unbiased estimate of the generalization

error as the forest building progresses.

• It has an effective method for estimating missing data and

maintains accuracy when a large proportion of the data are

missing.

Random Forest:
Features and Advantages

• It has methods for balancing error in class population

unbalanced data sets.

• Generated forests can be saved for future use on other data.

• Prototypes are computed that give information about the

relation between the variables and the classification.

• It computes proximities between pairs of cases that can be

used in clustering, locating outliers, or (by scaling) give

interesting views of the data.

• The capabilities of the above can be extended to unlabeled

data, leading to unsupervised clustering, data views and outlier

detection.

• It offers an experimental method for detecting variable

interactions.

• Random forests have been observed to over-fit for some

datasets with noisy classification/regression tasks.

• For data including categorical variables with different

number of levels, random forests are biased in favor of

those attributes with more levels. Therefore, the variable

importance scores from random forest are not reliable for

this type of data.

Random Forest:
Disadvantages

47

Some Issues to Consider

• Parallelism in Ensembles: Bagging is easily

parallelized, while Boosting is not.

• Variants of Boosting to handle noisy data.

• How “weak” should a base-learner for Boosting be?

• Exactly how does the diversity of ensembles affect

their generalization performance.

• Combining Boosting and Bagging.

Contents

• Multi-source heterogeneous data

• Data Fusion Techniques

• Evaluation Measures

• Summary

Evaluation Measures

49

• Importance of Evaluations

• Efficiency vs. effectiveness
o Efficiency measured using speed and storage overhead

o Effectiveness measured using relevance

Relevant Non-Relevant

Retrieved

Missed

a

c

b

d

N=a+b+c+d total number of documents DB

Effectiveness:

• Precision (P)

= a / (a+b)

• Recall (R)

= a / (a+c)

• For both IR and TC, we have:

Evaluation Measures -2

50

• It is generally more convenient to present a single number:

F = [(2+1) P R] / [2P + R]

• When both P & R have equal weights, i.e. when = 1, we

have:
F1 = [2 P R] / [P + R]

This is popularly used in retrieval evaluations

• Results often presented as:
o Average F1 values

o Tables of average precision values at standard recall intervals (of

0.1 intervals)

o Recall-Precision graph

• Results over many collections are compared

Evaluation Measures -3

51

• For classification, we needs to account for skewness

in data during evaluation

• Two ways to obtain an overall F1 value:

o MicroF1 – average of F1 over all test documents

o MacroF1 – average over the categories

• Characteristics of these two measures:

o MicroF1 tends to be dominated by classifier’s performance on

common categories

o MacroF1 mostly influenced by performance on rare categories

(a stricter measure)

Evaluation Measures -4

• For retrieval, the total # of relevant items is not known,

Average Precision AveP is normally used:

• Example: If returned result is (1 means relevant, 0 irrelevant):

1, 0, 0, 1, 1, 1

1/1, 0, 0, 2/4, 3/5, 4/6 -- precision @ k

AveP = (1 + 2/4 + 3/5 + 4/6) / 4 = 0.69

o where rel(k) =1 if image at rank k is relevant, zero otherwise

o Note that the average is over all relevant documents

• Mean Average Precision (MAP):

o Average over all queries

Cross-Validation -1

• Split original set of examples, train

+

+

+

+

+
+

+

-

-

-

-
-

-

+

+

+

+

+

-

-

-

-

-

-

Hypothesis space H

Train

Examples D

• Evaluate hypothesis on testing set

+

+

+

+

+
+

+

-

-

-

-
-

-

Hypothesis space H

Testing set

Cross-Validation -1

• Evaluate hypothesis on testing set

Hypothesis space H

Testing set

++

+
+

+

--

-

-

-

-

+

+

Test

Cross-Validation -1

• Compare true concept against prediction

+

+

+

+

+
+

+

-

-

-

-
-

-

Hypothesis space H

Testing set

++

+
+

+

--

-

-

-

-

+

+

9/13 correct

Cross-Validation -1

• k-fold cross-validation

Train Test

Dataset

Cross-Validation -2
Splitting Strategies

• k-fold cross-validation

• Leave-one-out (n-fold cross validation)

Train Test

Dataset

Cross-Validation -2
Splitting Strategies

Contents

• Multi-source heterogeneous data

• Data Fusion Techniques

• Evaluation Measures

• Summary

• Data from different sources is heterogeneous

in nature.

• Efficient source fusion strategy plays a crucial

role in multi-source learning and it is not

trivial task

• Simple feature vector concatenation is not

always enough.

• Feature selection mechanisms are helpful

• Ensemble learning methods can efficiently

fuse multiple data sources.

Summary

Next Lesson

• Case Study

61

