

Multi-Source Big Data

How to obtain and process various types of user-generated data.

by Aleksandr Farseev

nus.academia.edu/farseev

Agenda

Brief summary of the lecture..

2

Textual Data

- 1. N-Grams
- 2. Topics
- 3. Dictionaries
- 4. Heuristics

Visual Data

- 1. Bag of Visual Words
- 2. Visual Concepts
- 3. Deep features

2. Spatial Features

Venue (POI) semantics

Location Data

3

1.

- 3. Temporal Features
- 4. Mobility Features

Sensor Data

- 1. Exercise semantics
- 2. Statistical Features
- 3. Frequency Features

Data Gathering

1. Collecting Multi-Source Data

Big data is not actually about the data. The revolution is not that there's more data available. The revolution is that we know what to do with it now...

- Gary King

Multiple social networks describe users from multiple views

Some facts about social networks...

More than 50% of onlineactive adults use more than three social networks in their daily life*

*According Paw Research Internet Project's Social Media Update 2014 (www.pewinternet.org/fact-sheets/social-networking-fact-sheet/)

Different data modalities describe users from multiple views

Indeed, they are

Textual Data

Reference

*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. **Harvesting multiple sources for user profile learning: a Big data study.** ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

N-Gram Models of Language

7

- Use word sequences of length n = 1... k, called n-grams
- Language Model (LM) unigrams (n = 1), bigrams (n = 2), trigrams,...
- How do we obtain such data representations?
 Very large corpora Why?

Simple N-Grams

8

Assume a language has T words in its lexicon, how likely is word x to follow word y?

- Simplest model of word probability: 1/T
- Alternative 1: estimate likelihood of x occurring in new text based on its general frequency of occurrence estimated from a corpus (unigram probability)

popcorn is more likely to occur than unicorn

• Alternative 2: condition the likelihood of x occurring in the context of previous words (bigrams, trigrams,...) mythical unicorn is more likely than mythical popcorn

Bag of N-Grams

- Count occurrences of each term (n-gram)
- Pick top N most frequent as a Bag of Terms (n-grams): T = { $t_1, t_2, t_3, ..., t_N$ }
- Each document D for user u is represented by normalized terms (n-grams) distribution among N most frequent terms (n-grams): $D_u = \{\frac{t_{1u}}{N}, \frac{t_{2u}}{N}, \frac{t_{3u}}{N}, \dots, \frac{t_{Nu}}{N}\}$

Words usage study for personality profiling

James W. Pennebaker

The smallest, most commonly used, most forgettable words serve as windows into our thoughts, emotions, and behaviors.

- Task Word usage analysis* and correlation with personality
- Data Various essays and questionnaires
- Approach manual personality-related dictionaries construction
- Findings:

Certain word usage statistics are good indicators for human personality profiling

LIWC

- Count occurrences of each words that belong to each LIWC category
- Each document D for user u is represented as a distribution among 74 LIWC categories: $D_u = \{\frac{\text{LIWC}_u}{N}, \frac{\text{LIWC}_{2u}}{N}, \frac{\text{LIWC}_u}{N}, \dots, \frac{\text{LIWC}_u}{N}\}$

11

Topic Modeling (1)

Seeking Life's Bare (Genetic) Necessities

Haemophilus

genome 1703 genes

COLD SPRING HARBOR, NEW YORK— How many genes does an organism need to survive? Last week at the genome meeting here,* two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today's organisms can be sustained with just 250 genes, and that the earliest life forms

required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn't be enough.

Although the numbers don't match precisely, those predictions

* Genome Mapping and Sequencing, Cold Spring Harbor, New York, May 8 to 12.

SCIENCE • VOL. 272 • 24 MAY 1996

"are not all that far apart," especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of Uppsala University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. "It may be a way of organizing any newly sequenced genome," explains

Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an

- Methods for automatically organizing, understanding, searching and summarizing large electronic archives.
- Uncover hidden topical patterns in collections.
 - Annotate documents according to topics.
- Using annotations to organize, summarize and search.
- Widely poplar approach: Latent Dirichlet Allocation (LDA)*

*D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet Allocation" The Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003.

•

•

Topic Modeling (2)

Topics

Topic Modeling (3)

- Only documents are observable (all user's tweets are in one document for every user).
- Infer underlying topic structure:

Topics that generated the documents. For each document, distribution of topics For each word, which topic generated the word.

Behavioral Features

15

Data representation	Description
Number of hash tags	Number of hash tags mentioned in message
Number of slang words	We calculate number of slang words / tweet and compute average slang usage
Number of URLs	Number of URL's one usually use in his/her tweets
Number of user mentions	Number of user mentions – may represent one's social activity
Number of repeated chars	Number of repeated characters in one tweets (e.g. noooooooo, wahhhhhhh)
Number of emotion words	Number of words that are marked with not – neutral emotion score in Sentiment WordNet
Number of emoticons	Number of common emoticons from Wikipedia article
Average sentiment level	Module of average sentiment level of tweet obtained from Sentiment WordNet
Average sentiment score	Average sentiment level of tweet obtained from Sentiment WordNet
Number of misspellings	Number of misspellings fixed by Microsoft Word spell checker
Number of mistakes	Number of words that contains mistake but cannot be fixed by Microsoft Word spell checker
Number of rejected texts	Number of tweets where 70% of words either not in English or cannot be fixed by spell checker
Number of terms average	Average number of terms per / tweet

Visual Data

Reference

*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

Scale Invariant Feature Transform (SIFT) descriptor (1)

Basic idea: use edge orientation representation: Take 16x16 square window around detected feature Compute edge orientation for each pixel Filter out weak edges (threshold gradient magnitude) Create histogram of surviving edge orientations

Scale Invariant Feature Transform (SIFT) descriptor (2)

A popular descriptor:

Divide the 16x16 window into a 4x4 grid of cells (we show the 2x2 case below for simplicity) Compute an orientation histogram for each cell 16 cells X 8 orientations = 128 dimensional descriptor

- Invariant to: Scale Rotation
- Partially invariant to: Illumination changes Camera viewpoint Occlusion, clutter

Bag of visual words (1)

Can images be represented as Bag-of-Visual Words?

Idea: quantize SIFT descriptors of all training images to extract representative visual words!

Bag of visual words (2)

Step 1: Extract interest points of all training images

Bag of Visual Words (3)

Step 2: Features are clustered to quantize the space into a discrete number of visual words.

Bag of Visual Words (4)

Bag of Visual Words (5)

Step 3: Summarize (represent) each image as histogram of visual words and use as basis for matching and retrieval!

Next Step: Image Concept Detection (1)

Tree concept detection answers the question: "Are there Trees on the picture?"

Next Step: Image Concept Detection (2)

It also answers the question: "What objects are on the picture?"

One way to detect image concepts

- 1. Representative set of images in each category is collected
- 2. An image is represented by a collection of "visual words"
- 3. Object categories are modeled by the distributions of these visual words

Concept Detection: Discriminative Model

- Object detection and recognition is formulated as a classification problem. The image is partitioned into a set of overlapping windows, and a decision is taken at each window about if it contains a target object or not.
- Each window is represented by a large number of features that encode info such as boundaries, textures, color, spatial structure.
- The classification function, that maps an image window into a binary decision, is learnt using methods such as SVMs or neural networks

Location Data

Reference

*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

Location-Based Social Networks

People want to share their geographic position with their friends.

Foursquare and Facebook are main players

Foursquare and Facebook are the main players with billions of check-in records.

÷

-

31

The Multi-Dimensional Check-In

GFO

	Kuwait	rahad Al-Malik Al-Sabah Rd at The Village 17 minutes ago via Swarm for IOS	© Mapbox © OpenStreetMap
(Coin	S	<u> </u>
	🔶 To	oday is Demah AlMutairi's birthday!	+20
	ᅌ B	oom! 100 check-ins.	+10
	() F	irst check-in at The Village.	+5
	o F	irst Food Court!	+5
	• 6	areat photo!	+5
	o F	irst check-in in Mubarāk Al-Kabīr.	+3
	🗭 S	haring is caring!	+2

764 venue

categories

Location Data Representation: Utilizing Venue Semantics

Venues are not just GEO points, but multidimensional objects with rich semantics

*

*

User N

*

*

*

*

*

*

*

*

*

*

*

*

Location Data Representation: Location Topics

- 1. Map all Foursquare check ins to Foursquare venue categories from category hierarchy.
- 2. Form user related documents, containing venue categories of every check-in
- 3. Apply LDA on it represent as distribution among n latent topics, where Users documents, words

Location Data Representation: Location Topics (2)

	category distribution among	5 LDH topics
ID	Categories	LDA Topics
T1	Malay Res-t, Mall, University, Indian	Food Lovers
	Res-t, Aisian Res-t	
T2	Cafe, Airport, Hotel, Coffee Shop,	Travelers
	Chinese Res-t	(Business)
T3	Nightclub, Mall, Food Court, Trade	Party Goers
	School, Res-t, Coffee Shop	
T4	Home, Office, Build., Neighbor-d,	Family Guys
	Gov. Build., Factory	(Youth)
T5	University (Collage), Gym, Airport,	Students
	Hotel, Fitness Club	
T6	Train St., Apartment, Mall, High	Teenagers
	School, Bus St.	(Youth)

Category distribution among LDA topics

LDA word distribution over 6 topics for collected Foursquare check-ins. Every venue category is considered as a word, each Foursquare user - as a document

Location Data Representation: GEO

*Qu, Y., & Zhang, J. (2013, May). Trade area analysis using user generated mobile location data. In *Proceedings of the 22nd international conference on World Wide Web* (pp. 1053-1064). International World Wide Web Conferences Steering Committee

Location Data Representation: Temporal

Effectiveness of each feature over time changes.

- Predictions are more accurate at noon than in the evening
- Predictions for Physical & Rank distances reverse -- users cover shorter distance at night
- Predictions for Historical Visits & Place Transition drop significantly over weekends
- whereas Categorical Preference, Place Popularity & distance based features are more stable

*A Noulas S Scellato, N Lathia & C Mascolo (2012). Mining User Mobility Features for Next Place Prediction in Location-based Services. IEEE Int'l Conf. on Data Mining, 2012.

Sensor Data

Reference

*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

Sensor Data Representation: Utilizing Exercise Semantics

For case when user performed two swimming and one running workout

	Category ₁		Category _{swimming}	•••	Category _{running}	•••	Category _n
U ₁	0	0	2	0	1	0	0
•••	*	*	*	*	*	*	*
U _n	*	*	*	*	*	*	*

Each user is represented as distribution among 95 workout categories

Sensor Data Representation: Frequency Spectra

Sensor Data Representation: Statistics

Data Representation: Summary

All data types together

Linguistic features: LIWC; Latent Topics Heuristic features: Writing behavior

Location Features:

Location Semantics: Venue Category Distribution Mobility Features: Areas of Interest (AOI)

Image Features

Image Concept Distribution (Image Net)

Exercise statistics + sport types + spectrum

On Data Gathering And Cross-Network Account Disambiguation

Reference

*Farseev, A., Akbari, M., Samborskii, I., & Chua, T. S. (2016). 360° user profiling: past, future, and applications by Aleksandr Farseev, Mohammad Akbari, Ivan Samborskii and Tat-Seng Chua with Martin Vesely as coordinator. ACM SIGWEB Newsletter, (Summer), 4.

Data Gathering: Data sources

Which data sources and why?

Largest English-Speaking Microblog

tendomondo

One of the Largest Sports Tracking Network

Data Gathering And Simultaneous Cross-Network Account Mapping

About finding the same users in different social networks...

Twitter plays a role of a "sink" for multi-modal data from other social networks.

Cross-network ambiguity is resolved after first cross-network post.

Cross-Network Account Mapping: Example

H endomondo

🕺 Workouts 🛛 🗠 Statistics L Profile

Aleksandr Farseev

Country: Singapore Postal Code: 117417 Birthday: Jun 08, 1989 Male Sex: Weight: 71 kg Height: 168 cm Favorite Sport: Dancing

I just finished running 0.52 miles in 17m:34s with #Endomondo #endorphins

Cross-network post

360° User Profiling

How to learn from multi-source multi-modal data.

by Aleksandr Farseev

nus.academia.edu/farseev

Agenda

Brief summary of the talk...

47

Motivation and Data

- 1. Definition and Motivation
- 2. NUS-MSS Dataset
- 3. NUS-SENSE Dataset
- 4. Framework Overview

Individual User Profiling

- 1. Multi-modal data representation
- 2. Multi-Source Ensemble Learning for Demographic Profiling
- 3. Learning From Temporal Data for Personality Profiling
- 4. Sensor data representation
- 5. Multi-Task Learning for Wellness Profiling

Group User Profiling

3

- 1. Multi-modal data representation
- 2. Clustering on Multi-Layer Graphs for Group Profiling
- 3. Cross-Domain Recommendation as Implicit Evaluation Approach
- 4. Real-World Application: bBridge Analytics Platform

Conclusion

4

- 1. Conclusion
- 2. Future Work

What is user profile?

Well, it may mean many things...

Multiple social networks describe users from multiple views

Some facts about social networks...

More than 50% of onlineactive adults use more than three social networks in their daily life*

*According Paw Research Internet Project's Social Media Update 2014 (www.pewinternet.org/fact-sheets/social-networking-fact-sheet/)

Different data modalities describe users from multiple views

Indeed, they are:

User profiling in our works

Those attributes that we infer

52

360° User Profile Learning Framework Overview

Multi-Source User Profiling And Its Applications in One Framework....

1) Individual And Group User Profiling

2) Applications

$\overleftrightarrow \to \diamondsuit$ Data for User Profiling

*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

The following is relevant to:

- NUS-MSS: <u>http://nusmultisource.azurewebsites.net</u>
- NUS-SENSE: <u>http://nussense.azurewebsites.net</u>
- NUS-PERSONALITY: Dropbox

Textual data representation (1): LIWC

Pennebaker's LIWC Descriptors

among K=69 LIWC categories

69 LIWC Categories

* Pennebaker, J. W. (2011). The secret life of pronouns.

Textual data representation (2): Latent Topic Modeling

Latent Dirichlet Allocation

57

Each user is represented as distribution among K=50 latent topics

Textual data representation (3): Writing style features

Heuristically inferred and found to be useful...

Image Data Representation: Image Concept Detection

Going deeper with convolutions with Google Net

*Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., & Rabinovich, A. (2015). Going deeper with convolutions. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 1-9).

distribution among

764 venue

categories

Location Data Representation (1): Utilizing Venue Semantics

Venues are not just GEO points, but multidimensional objects with rich semantics

	Category 1		Category Restaurant		Category Airport		Category K
User 1	0	0	2	0	1	0	0
	*	*	*	*	*	*	*
User N	*	*	*	*	*	*	*

akesho

Location Data Representation (2): Mobility Features

User's Area of Interests (AoI) – area the most frequently visited by the user. In fact, it is the convex hull over the dense user's check-in region (DB-Scan cluster).

Defiance

*Qu, Y., & Zhang, J. (2013, May). Trade area analysis using user generated mobile location data. In Proceedings of the 22nd international conference on World Wide Web (pp. 1053-1064). International World Wide Web Conferences Steering Committee

Sensor Data Representation

Age / Gender

sport categories

Furrier's Spectrum 500 frequency bins $F_{Max} = 0.5 dHz$

62

Data Representation: Summary

All data types together

Linguistic features: LIWC; Latent Topics Heuristic features: Writing behavior

Location Features:

Location Semantics: Venue Category Distribution Mobility Features: Areas of Interest (AOI)

Image Features

Image Concept Distribution (Image Net)

Exercise statistics + sport types + spectrum

Lunch Break

60 Minutes

The demographics of who's on what social network are shifting — older social networks are reaching maturity, while newer social messaging apps are gaining younger users fast...

- Thiago Guimaraes

Individual User Profiling Part I: Demographic Profiling (NUS-MSS)

*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

On importance of basic demographic attributes

What we can do if we know Homer's age?

000 Age: 40 Assistance Marketing Gender: Male Activity Trade are analysis recommendation, Demography and Venue interest - based recommendation, marketing Etc. Advertisement Wellness Demography and Health group interest - based Tent to stay at home, prediction Morning excursive personalized Lifestyle visit local pubs and with medium advertisement recommendation shopping mall daily. intensity. Medium overweight, Advertise new Beer potential hypertonia brand and new car

models.

and diabetes.

Related Research Directions: Individual User Profiling

Conventional Data Sources

Manually-collected smallscale datasets: voice records, hand-written texts, etc.

Demographic Profiling

PAN 13', 14', 15', 16', 17' Mostly mono-modal data processing (Text from Microblogs, Blogs, etc.)

Other Profiling Domains

68

Mostly mono-modal mono-source data processing.

Multi-source Profiling

Utilize multiple sources, but usually require all sources to be complete, which is unrealistic.

Sensor data utilization

Mostly mono-source and solve tasks as human activity recognition, which is not directly related.

Physical Attributes Inference

Mostly single-modal. Limited number of contributions to the field..

Usually, this problem of individual user profiling is treated as a supervised learning task and performed based on mono-source mono-modal datasets. Research on multi-source data learning is relatively sparse and limited by unrealistic assumptions. Wellness attributes inference was not yet comprehensively studied.

Idea I

From what it all started.

Age and Gender Prediction

Running Random Forests With Random Restart

Age and Gender Prediction: Details

Some details that you may find in the paper

- Bias of estimated ages does not exceed ±2.28 years. It is thus reasonable to use the estimated age for age group prediction task.
- We have adopted SMOTE* oversampling to obtain balanced age-group labeling
- By performing 10-fold cross validation, we determine the optimal number of constructed random trees for each classifier with iteration step equal to 5 as 45, 25, 35, 40, 105 random trees for Random Forest Classifiers learned based on location, LIWC, heuristic, LDA 50, and image concept features respectively.
- We jointly learn the l_i model "strength" coefficient by performing "Hill Climbing" optimization** with step 0.05 and 1000 random restarts.

*N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research, 2002.

**An iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a better solution by incrementally changing a single element of the solution. If the change produces a better solution, an incremental change is made to the new solution, repeating until no further improvements can be found.

Age and Gender Prediction: Results

About The Power Of Multiple Sources...

Data Source Combinations

Method	Gender	Age			
Single-Source					
RF Location Cat. (Foursquare)	0.649	0.306			
RF LWIC Text(Twitter)	0.716	0.407			
RF Heuristic Text(Twitter)	0.685	0.463			
RF LDA 50 Text(Twitter)	0.788	0.357			
RF Image Concepts(Instagram)	0.784	0.366			
Multi-Source combinations					
RF LDA + LIWC(Late Fusion)	0.784	0.426			
RF LDA + Heuristic(Late Fusion)	0.815	0.480			
RF Heuristic + LIWC (Late Fusion)	0.730	0.421			
RF All Text (Late Fusion)	0.815	0.425			
RF Media + Location (Late Fusion)	0.802	0.352			
RF Text + Media (Late Fusion)	0.824	0.483			
RF Text + Location (Late Fusion)	0.743	0.401			
All sources together					
RF Early fusion for all features	0.707	0.370			
RF Multi-source (Late Fusion)	0.878	0.509			

Other Baselines

Method	Gender	Age				
State-of-the-arts techniques						
SVM Location Cat. (Foursquare)	0.581	0.251				
SVM LWIC Text(Twitter)	0.590	0.254				
SVM Heuristic Text(Twitter)	0.589	0.290				
SVM LDA 50 Text(Twitter)	0.595	0.260				
SVM Image Concepts(Instagram)	0.581	0.254				
NB Location Cat. (Foursquare)	0.575	0.185				
NB LWIC Text(Twitter)	0.640	0.392				
NB Heuristic Text(Twitter)	0.599	0.394				
NB LDA 50 Text(Twitter)	0.653	0.343				
NB Image Concepts(Instagram)	0.631	0.233				

4 Age Groups: <20; 20-30; 30-40; >40 2 Genders: Male; Female

*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.
Contributions...

First Large-Scale Multi-Source Cross-Modal Cross-Region Dataset NUS-MSS

*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

The most important kind of freedom is to be what you really are.

- Jim Morrisson

Individual User Profiling Part II: Personality Profiling (NUS-PERSONALITY)

Idea II

From what it all started..

What is user personality?

Mayers-Briggs Type Indicator (MBTI)

MBTI – the typology, which is designed to exhibit psychological preferences in how people perceive the world around them and distinguishes 16 personality types.

Experiments

79

- #1 Experiment. Test the models trained based on multisource data for different size of temporal window. Use NMF to complete missing data points.
- #2 Experiment. Test the best temporal model from Experiment 1 on different data modalities and their combinations

Test/Train sets:

- Divide ALL users into test(20%) and train(80%) based on the distribution of their MBTI type
- For #1 Experiment use all test data
- For #2 Experiment use only complete (with 3 social networks) users.

Incorporation of temporal aspect

Divide user activity into 10 time periods

80

Dealing with missing data

- Model: LSTM for time periods. Neural network that will take into account not only the multimodality in data, but also the temporal aspect.
- Problems: very few users with 3 social networks in each n-period window(~120)
- Solution:
 - Use non-negative matrix factorization for data completion for every kperiod window

Results: Different Time Windows

82

Results: Different Data Source Combinations

83

	Precision	Recall	F-measure	Macro F- measure	Model
E	0,60	0,61	0,61		Gradient
I	0,64	0,62	0,62	0,62	Boosting
S	0,388	0,373	0,38		LSTM
N	0,7	0,713	0,706	0,543	(7 intervals window)
Т	0,462	0,451	0,623		LSTM
F	0,613	0,634	0,623	0,623	(7 intervals window)
J	0,531	0,697	0,65		LSTM
Р	0,609	0,697	0,65	0,65	(6 intervals window)

Contributions...

84

The First Works On Multi-Source

Temporal Personality Profiling

On of the first works on temporal multi-source learning

"

Health is a state of body. Wellness is a state of being... - James Stanford

*A. Farseev, A., & Chua, T. S. (2017). Tweetfit: Fusing multiple social media and sensor data for wellness profile learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI.

86

People are often not aware of their lifestyle problems

Why Homer often end up in Hospital

Weight Problems Consequences

It is not just about looking not fit...

88

Weight Problems Consequences

- All-causes of death (mortality)
 Gallbladder disease
 - - Osteoarthritis
 - Some cancers
 - Mental illness such as clinical depression
 - Body pain

High blood pressure (Hypertension) —

- High / Low HDL cholesterol
- Type 2 diabetes
- Coronary heart disease
- Stroke

*Health effect of overweight and obesity. Center of disease control and prevention. http://www.cdc.gov/healthyweight/effects/

Idea III

Going further towards realizing the ideal of 360° User Profile Learning

Unite Social Media And Wearable Sensors For Physical Attributes Inference

Just tweet to be fit....

Weight Fluctuation Trend (BMI Trend)

Background: Multi-Task Learning (MTL)

Single Task Learning

Multi-task Learning is different from single task learning in the training (induction) process.

Multi-Task Learning

Inductions of multiple tasks are performed simultaneously to capture intrinsic relatedness.

Example of Regularized MTL: Assumption: task parameter vectors of all tasks are close to each other.

Multi-Source Multi-Task Learning

Users group Z for category g(i)

Doing Predictions via Multi-Source Multi-Task Learning

Notations

Notation	Description
N	Number of exclusively labeled data samples
$S(\geq 2)$	Number of data sources (data modalities)
$G(\geq 1)$	Number of inference attribute categories (for BMI category, $G=8;$ for "BMI Trend", $G=1)$
g	Inference attribute category (class). For example, "Obese" or "Normal" in case of BMI category attribute.
Т	Number of multi-task learning Tasks
t	A multi-task learning Task
D_t	Dimensionality (feature vector dimension) of the task \boldsymbol{t}
D_{max}	Maximum possible dimensionality of a task
N_t	Number of data samples of the task t
\hat{T}	Number of different existing combinations of sources
$f_t(\mathbf{x}_j^t; \mathbf{w}^t)$	Linear prediction model for the jth data sample of task t
$\mathbf{w}^t \in \mathbb{R}^{D_t}$	Model parameter vector of task t
W	All model parameters, denoted as linear mapping block matrix
$\Gamma(\mathbf{W})$	Objective function
$\Psi(\mathbf{X},\mathbf{W},\mathbf{Y})$	Loss function
$\Upsilon(\mathbf{W})$	Sparsity regularizer
$\Omega(\mathbf{W})$	Inter-category smoothness regularizer
$\rho(s,f)$	Index function that denotes all the model parameters of the fth feature from the sth source
$\xi(t,g)$	Index function that picks up the model parameter (\mathbf{w}_{g+1}^t) , which corresponds to the attribute category $q+1$ (adjacent to q)

 $\Gamma(\mathbf{W}) = \underset{\mathbf{W}}{\operatorname{arg min}} \ \Psi(\mathbf{X}, \mathbf{W}, \mathbf{Y}) + \lambda \Upsilon(\mathbf{W}) + \mu \Omega(\mathbf{W}),$

$$\Psi(\mathbf{X}, \mathbf{W}, \mathbf{Y}) = \frac{1}{T} \sum_{t=1}^{T} \frac{1}{N_t} \sum_{i=1}^{N_t} \log(1 + e^{-y_i^t f_t(\mathbf{x}_i^t; \mathbf{w}^t)})$$

$$\Upsilon(\mathbf{W}) = \sum_{s=1}^{S} \sum_{f=1}^{F_s} \left\| \mathbf{w}_{\rho(s,f)} \right\|$$

$$\Omega(\mathbf{W}) = \sum_{t=1}^{\hat{T}} \sum_{g \in C_{D_t}} \kappa_{g,\xi(t,g)} \left\| \mathbf{w}_g^t - \mathbf{w}_{\xi(t,g)}^t \right\|^2$$

BMI Category and BMI Trend Prediction: Results (1)

Data Source Combinations

Data Source Combination	BMI category prediction		
	R_{Mac}/P_{Mac}	$F_{1,Mac}$	
Visual	0.049/0.188	0.077	
Venue Semantics & Mobility	0.194/0.107	0.137	
Sensors	0.153/0.158	0.155	
Textual	0.229/0.146	0.178	
Visual + Sensors	0.174/0.201	0.186	
Visual + Text	0.126/0.245	0.166	
Visual + Venue Semantics & Mobility	0.161/0.154	0.157	
Text + Venue Semantics & Mobility	0.160/0.204	0.179	
Sensors + Venue Semantics & Mobility	0.163/0.233	0.191	
${\bf Sensors} + {\bf Text}$	0.148/0.270	0.191	
Visual + Text + Venue Semantics & Mobility	0.126/0.233	0.163	
Sensors + Text + Visual	0.137/0.207	0.164	
Sensors + Text + Venue Semantics & Mobility	0.182/0.236	0.205	
${\bf Sensors} + {\bf Venue} \ {\bf Semantics} \ \& \ {\bf Mobility} + {\bf Visual}$	0.180/0.283	0.221	
All Data Sources	0.214/0.292	0.246	

Other Baselines

Method	BMI category		"BMI Trend"	
Nicoliou	R_{Mac}/P_{Mac}	$F_{1,Mac}$	R_{Mac}/P_{Mac}	$F_{1,Mac}$
MSESHC [47]	0.141/0.145	0.142	0.634/0.655	0.644
Random Forest	0.135/0.226	0.169	0.333/0.863	0.480
iMSF [160]	0.171/0.174	0.172	0.649/0.649	0.649
$aMTFL_2$ [85]	0.162/0.215	0.184	0.700/0.722	0.710
TweetFit	0.222/0.202	0.211	0.705/0.732	0.718
M ² WP	0.221/0.229	0.225	Ω is not applicable	

8 BMI Categories: Thinness I, II, III; Normal; Obese I, II, III, IV 2 BMI Trends: Increase; Decrease

Contributions

95

Novel Generic Model For Supervised Learning From Multi-Source Multi-Modal Incomplete Data

First Large-Scale Multi-Source Social-Sensor Dataset

02

NUS-SENSE

*Farseev, A., & Chua, T. S. (2017). Tweet can be Fit: Integrating Data from Wearable Sensors and Multiple Social Networks for Wellness Profile Learning. ACM Transactions on Information Systems (TOIS).

Every successful individual knows that his or her achievement depends on a community of persons working together.

- Paul Ryan

Group User Profiling And Its Application In Urban Mobility Domain (NUS-MSS)

User Community Definition

98

Communities are distinct groups of people, divided by a certain property.

Why do we need to detect user communities (1)?

For facility planning

Why do we need to detect user communities (2)?

For personalized advertisement and marketing

Market Goods on Social Media

Chicken Rice Seller

Idea IV

Related Research Directions: Group User Profiling

Single-Source Clustering

Mostly mono-modal mono-source data processing:

- Graph Partitioning
- Hierarchical Clustering
- Partition Clustering
- Spectral clustering
- Quality Optimization

Multi-Source Clustering

Limited number of contributions to the field. Graphs are often combined in late fusion manner, but not learned jointly. Inter-source relationship is not considered.

Urban Mobility Applications

102

Mostly mono-modal mono-source data processing in: recommendation, prediction, qualitative analysis.

Cross-Domain Recommendation

Inter-source relationship is not considered in most of the studies.

Usually, this problem of group user profiling is treated as a unsupervised learning task and performed based on mono-source mono-modal datasets. Research on multi-source group profiling is relatively sparse and limited by lack of inter-source relationship modeling. Implicit evaluation is adopted in most of the related studies.

User Relations and Community Representation

One way to find representative user groups is to model users' relationships in the form of a graph so that dense subgraphs are considered to be user communities.

Finding Communities in single-source data

One of the commonly used formulations of the community detection problem is its representation in a form of *MinCut* problem.

For a given number k of subsets, the *MinCut* involves choosing a partition C_1, \ldots, C_k such that it minimizes the expression:

$$cut(C_1,\ldots,C_k) = \sum_{i=1}^k W(C_i,\bar{C}_i)$$

*W is the sum of weights of edges attached to vertices in C_i

Approximating and solving *MinCut* problem?

The state-of-the-art approximation of *MinCut* is formulated in a form of **standard trace minimization problem**

 $\min_{U \in \mathbb{R}^{n \times k}} \operatorname{tr}(U^T L U), \text{ s. t. } U^T U = I$

which can be solved by Spectral Clustering:

- 1. Calculates Laplacian matrix $L \in \mathbb{R}^{n \times n}$
- 2. Builds matrix of the first k eigenvectors $U \in \mathbb{R}^{n \times k}$ (correspond to the smallest eigenvalues of L)
- 3. Clusters data in a new space U using i.e. k-means algorithm

How to represent multi-source data?

106

Multi-layer graph – graph G, where $G = \{G_i\}, G_i = (V, E_i)$:

Regularized Clustering on Multi-layer Graph (1)

Utilize Grassman Manifolds to keep final latent representation "close" to all layers of multi-layer graph*. Where projected distance between two spaces Y_1 and Y_2 :

 $d_{Proj}^{2}(Y_{1}, Y_{2}) = \frac{1}{2} \left\| Y_{1}Y_{1}^{T} - Y_{2}Y_{2}^{T} \right\|_{F}^{2}$, where $\|A\|_{F}$ is the Frobenius norm

* X. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov. Clustering on multi-layer graphs via subspace analysis on grassmann manifolds. IEEE Transactions on Signal Processing, 2014.

Regularized Clustering on Multi-layer Graph (2)

108

Extends the objective function to introduce the subspace analysis regularization

$$\min_{U \in \mathbb{R}^{n \times k}} \sum_{i=1}^{M} \operatorname{tr} \left(U^{T} L_{i} U \right) + \alpha \left(kM - \sum_{i=1}^{M} \operatorname{tr} \left(UU^{T} U_{i} U_{i}^{T} \right) \right), \text{s.t. } U^{T} U = I$$
$$\min_{U \in \mathbb{R}^{n \times k}} \operatorname{tr} \left(U^{T} L_{mod} U \right)$$
$$L_{mod} = \sum_{i=1}^{M} (L_{i} - \alpha U_{i} U_{i}^{T})$$
Incorporating inter-layer relationship (1)

By using previously defined distance on Grassman Manifold, we present the objective function for the i^{th} layer as follows:

$$\min_{\widehat{U}_i \in \mathbb{R}^{n \times k}} \sum_{i=1}^{M} \operatorname{tr}\left(\widehat{U}_i^T L_i \widehat{U}_i\right) + \beta_i \left(kM - \sum_{j=1, j \neq i}^{M} w_{i,j} \operatorname{tr}\left(\widehat{U}_i \widehat{U}_i^T U_j U_j^T\right)\right), \text{ s.t. } \widehat{U}_i^T \widehat{U}_i = I$$

$$\min_{U \in \mathbb{R}^{n \times k}} \operatorname{tr}\left(\widehat{U}_{i}^{T}\widehat{L}_{i}\widehat{U}_{i}\right)$$
$$\widehat{L}_{i} = L_{i} - \beta_{i} \sum_{j=1, j \neq i}^{M} w_{i,j} \operatorname{tr}\left(U_{j}U_{j}^{T}\right)$$

Final Objective Function

Let's combine equations from previous slides to define the final objective function:

$$\min_{\widehat{U}_i \in \mathbb{R}^{n \times k}} \sum_{i=1}^{M} \operatorname{tr}\left(\widehat{U}_i^T L_i \widehat{U}_i\right) + a \left(kM - \sum_{j=1, j \neq i}^{M} w_{i,j} \operatorname{tr}\left(\widehat{U}_i \widehat{U}_i^T U_j U_j^T\right)\right), \text{ s. t. } \widehat{U}_i^T \widehat{U}_i = I$$
$$\widehat{L}_i = L_i - \beta_i \sum_{j=1, j \neq i}^{M} w_{i,j} \operatorname{tr}\left(U_j U_j^T\right)$$

Inter-layer relationship graph construction

Inter-layer relationship graph R(V, E) – weighted graph which represents the similarity between layers.

$$\forall (i,j) \in E, w_{i,j} = \frac{\sum_{k=2}^{K} \left(1 - \frac{\left\|M_{i,k} - M_{j,k}\right\|}{\sqrt{N(N-1)}}\right)}{K-1}$$

where $M_{i,k}$ is clustering co-occurrence matrix of layer *i*, $m_{a,b} = 1$, if users *a* and *b* assigned to the same cluster, and 0 otherwise.

360° User Profile Learning From Multiple Social Networks For Wellness And Urban Mobility Applications

Junior College

Implicit Evaluation: Venue Category Recommendation

Venue category recommendation – recommendation of venue categories (i.e. restaurant, cinema) to user using information about his/her profile (i.e. past visits) and/or information about users from the same domain.

Venue category:

- Clothing Store
- Hotel
- 💡 Ice Cream Shop

Total 764 different categories

Cross-Source Community-Based Collaborative Recommendation

113

We perform venue category recommendation based on both **Individual** and **Group Knowledge**, which naturally models the impact of society on an individual's behavior during the selection of a new place to go:

$$rec(u) = sort\left(\gamma \cdot vec_u + \theta \frac{\sum_{v \in C_u} vec_v}{|C_u|}\right)$$

$$+$$

Venue Recommendation Performance in Three Cities (1): Baselines

Figure 1: Evaluation of C^3R recommendation framework against baselines (NDCG@p, AP@p)

Venue Recommendation Performance in Three Cities (2): Source Combinations

115

SN combination	London	New York	Singapore
tw	0.547	0.535	0.627
fsq	0.549	0.536	0.628
inst	0.548	0.535	0.628
$\mathbf{tw} + \mathbf{fsq}$	0.557	0.541	0.636
$\mathbf{tw} + \mathbf{inst}$	0.550	0.537	0.632
$\mathbf{fsq} + \mathbf{inst}$	0.551	0.539	0.646
$\mathbf{tw} + \mathbf{fsq} + \mathbf{inst}$	0.559	0.548	0.653

*NDCG@60

+ Different Data Sources Differently Affect
 Community Detection And Recommendation
 + In Different Geo Regions, Different Data Sources W_R
 Play Different Roles

	(\mathbf{tw}	4sq	\mathbf{inst}	\mathbf{tmp}	mob \
	\mathbf{tw}	1	0.632	0.621	0.643	0.561
	4sq	0.632	1	0.614	0.631	0.570
_	\mathbf{inst}	0.621	0.614	1	0.621	0.551
	\mathbf{tmp}	0.643	0.631	0.621	1	0.560
	\ mob	0.561	0.570	0.551	0.560	1 /

Contributions

relationship Novel Schema For Automatic Inter-Layer Relationship Inference

Directly From Data

01

*Farseev, A., Samborskii, I., Filchenkov, A., & Chua, T. S. (2017 August). Cross-Domain Recommendation via Clustering on Multi-Layer Graphs. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.

"

Big Data is not about the data

- Gary King

Business Application

"bBridge" Social Multimedia Analytics Platform

*Farseev, A., Samborskii, I., & Chua, T. S. (2016, October). bBridge: A Big Data Platform for Social Multimedia Analytics. In *Proceedings of the 2016 ACM on Multimedia* ¹¹⁸ *Conference* (pp. 759-761). ACM.

Video: <u>http://video.bbridge.net</u> Demo: <u>http://demo.bbridge.net</u>

*Farseev, A., Samborskii, I., & Chua, T. S. (2016, October). bBridge: A Big Data Platform for Social Multimedia Analytics. In *Proceedings of the 2016 ACM on Multimedia Conference* (pp. 759-761). ACM.

Tech. Behind bBridge

The Analytics Pipeline

120

User Communities Detection

via clustering on multi-layer graph

Hot Topic Detection

via multi-modal topic modelling

User Communities Profiling

via users' attributes inference

Sentiment Analysis and Hot Events Detection

User Communities Monitoring

bBridge API

Something specially for WSSS'17

Demo: <u>http://video3.bbridge.net</u>

User Profiling

Age, Gender, Occupation, Education, Relationship inference

Image Object Detection

Detecting Objects and Concepts on Images

Multilingual Natural Language Processing

Named Entity Recognition, Sentiment Analysis, Part of Speech Detection

API Access: http://api.bbridge.net

Contributions

122

One of the First Social Multimedia Analytics Platforms that Make Use of Text, Images, and Locations Simultaneously

It is a mistake to try to look too far ahead. The chain of destiny can only be grasped one link at a time.

- Winston S. Churchill

Some additional inspiration...

Examples of Wellness Correlations (1): Individual Profiling

125

Examples of Wellness Correlations (2): Individual Profiling

Examples of Wellness Correlations (3): Individual Profiling

Examples of Wellness Correlations (4): Individual Profiling

Examples of Wellness Correlations (5): Individual Profiling

Examples of Inter-Source Correlations (I): Individual Profiling

Onlir

												7			a)		9	0					œ				2		
		G	2			¢	2					-	1			2		100	aoi d					لم ا						
	2	e.	പ്പ		_	C					~	0	5	21	t	<u> </u>	4ا ⁰	i È	5	4		,°,	_	1		်		5	-+	
	jğ		i e	0	يمان	gg	500	222	84	22	t 0	S G	7	ă ă	ຼີ	i d'	ăĕ	ЪÇ	2 °,	ية.	5	2 ^{Bl}	10	Ĕ:	- 7-	ă	ဥ္ကတ္တစ္ရ	2 Å	പ്	
	Ĕ,	5	35		8.0	5		50		1 ⁰	Big		SI.		, la	d d	۲ß	La c	을 읕.	, [™]	Sig	28	ig.	ē,		F,	500	SP.	old lo	
	ĕ	8.8	l e	8		8.8	8	20	00	8		<u>a</u> E	8	ĕ ĕ	<u>a</u> ē	2 2	ğe	ŏ	22	2 P	8	18,5		Eig	20	D'd	300	<u>a</u> E	20	
	DOL 1	Ŧ٢	Ľ,	Ĵ.	μĘ	Ē٢	,Ĉť	Ľ	ťť	Ĉ	216	55	Ē,	ē ē i	Ē₽≥	La la	ē B	or or or	<u>'</u> בו,	≥¦ē	Ē	e Bt	រុច	5	12	12.	1Ct	<u>E</u>	<u>T</u>	
	-b	₽.ĕ	n s	ŧ	ited	<u>e</u>	te e	l te	t te	ŧ	tag	<u>ë</u> j	te de	88		tag.	ns D	, si	ā	들흉	ti ti ti ti ti ti ti ti ti ti ti ti ti t	urs ite	tag	Ĕ.	l t	흉	tititititi		tag ta	
	ш	Ž₿	52	2	°≓≓i	₹8	52	22	22	,≧,	≦ <u>≃</u>	≧5	Ľ	ы ШШ	≧≧	221	ΞĒ	5	5≥:	≥ີພົ	24	2 ō ≩ ≡Щ ⊨	2	₹ð	3,3	Шł	333	≦5ı	N SC	
_Twitter_topic_3	\square	C	0	1		1						Ø									-			G	Ĺ					
Twitter_topic_32	-	_		_		_			_			_			_		-				_			-	-			B	G	
Twitter topic 25	O	-		-	+++		++				++	+		+++	+	+++	+		+++		+		\vdash	+	+		+++	M		
Twitter_topic_21	Ĭ					2									в					-										
I witter_topic_14	\vdash	_	5	C		A		G	_			_		0	-		A		R	G	+	(B)	B	- 1	R	G				
Twitter topic 20		-	ď			C	1 +					-			B	+++	0		M		+		M		1				9	
Twitter_topic_31						đ	>					ð										G			_			G	_	
Online_TimeZone_12_15		શ		1		ਦ			_		\$	ළ			-	8	_	1	5		-			-	ß			₩.	a.	
Endomondo topic 1	ூ	+		-	4	-	+++				0	+		Ð	+	0	-		2		+	B	\square	+	0	C		0		
Twitter_topic_45	Ŭ					2						1		Ŭ								Ŭ .								
Physical_age		2		_	ଅ	_		C	_		Ð	_			ъ		_				_	100		AL C	5					
Twitter topic 12	-		1	-	+++	-						+		+	-	+++	-				+		H	9	-					
Twitter_topic_23		শ	>	0	D	3						~				(Ð													
Iwitter_topic_1	\vdash	_	+		A	2			a a		h ah i	±			+	(B A	A.						AL.	-		A			
Twitter topic 47	\vdash	-		0	0	0			90	~				++	+	+++	0	9	+++		9		H	9	-	©	00			
Online_TimeZone_9_12		€		Q	ூ	Q			90	ę	D	Ø									ூ			0		Ō		٢		
Twitter_topic_49		_	- 1	0		શ		A	_		C	ଅ			-	A	-				-			-	-			G		
Twitter topic 37	\vdash	-		-		-		0	-			+		++	+	ĕ	-		B		+			+	+		+++	++		
Twitter_topic_43				•			ݨ			Ę	٥.		0	9				ூ											Θ	
Instagram_topic_7		ar l	Ø	م (5	_			_	-	Ð	_			_	Ð	_			_	6			-	_				-	
Twitter topic 10		B	+ 1	0	+++	1				5	1	-		+++	-	+++	-		0		+		$\left \right $	-	-		+++		9	
Foursquare_topic_2		Ŭ	Ø			Ŭ			Ð						C	>	Ø	6	(D)			Ø					G		_	
Twitter_topic_48		_	-	ଅପ	9				_	Ś	ב	_			_		_		C		_			4	_				G	
Twitter topic 28	G	-	+	-	+++		+++	-			Ð	Ð		Ø		+++	-	Ø) ()		+		H	9	+	B		++		
Twitter_topic_18	Ĭ	G									Ŭ	Ŭ														Ŭ				
Twitter_topic_26	Ø	_		_		T		G	_		•	_		Φ	_		_	6	ð		_			-		0		C		
Twitter topic 9	B	B		C	Þ						C	-												e	2			B		
Mobility_noise	Ŭ	Ŭ		ì					Ð	e	D	শ			₹)		6	9		ଅତ	(D)(Ð	Ŭ	ூ	
Foursquare topic_1	(O,		_					Ø	6	0	_		+	2		_	8)(O		ଅଷ		\square	-	A	Q	Ð			
Physical duration	\vdash	Ċ	(-	+	-			B		+	-		+	+	++	-	9	+		+	++-	+	-	-	\vdash	+e	0		
Physical_distance	G			_					Ĭ		ூ			٢								ூ				ூ				
Twitter_topic_7	•	e e	0	\$							1	Ð		Q	C		-	50 4			-		\square	-		5	_	Q		
Twitter topic 36	90	OG F	<u>-</u>	8	+	P				\vdash	0			U	+	+		90	0	+	-	C		B	+	9	++	8		
Physical_speed_avg	O	_		Ŭ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							6	D				ூ	Ŭ			Ð		Ŭ		Ð				
Instagram_topic_6		B.	Ø	8	2											\square	T		ூ					-		ூ				
Physical ascent		9	0											-		1	<u>v</u>									L [.	1			

Examples of Inter-Source Correlations (II): Individual Profiling

			2_15		ത	12							-2, -1, -1, -2, -3, -6, -2, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -3, -2, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3
		5	alu L	<u> </u>	e G	<u>م</u>	P.	2		ar <u>,</u> «	6 8 9 5	evg 6	
		12121	eZor opic		67-13 67-13	5 6 7 0 4 0 6 0 7 0 7 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0	001337	2019 1919 1919 1919 1919 1919 1919 1919		c 9 se drati	stance for	scent of	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	nitter nitter	ritter	tagr.	vsice vitter	nitter line	nitter ritter	ritter tagr	itter itter	itter itter	vsic bility vsic	ysic ysic	ysic	
			₹₹0 <u></u>	린글문글			A A S	3303; 		IT SUF	고 단 등 면 년	2525	
Endomondo_topic_ Twitter_topic	2	6		2	AT.	-	6	DO	Ø	ë e	00	ଁ୦୦	Endomondo_topic_2 O O O O O O O O O O O O O O O O O O O
Foursquare_topic	30		U	00		e) 	_0	0		G	000	2 00	Online_TimeZone_3_6 OC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Instagram_topic	1	U	Ð	•	0	00	0	9 0		C	000	0	Twitter_topic_6 @ 0 ● 0 0 00 0000 0 0 0 0 0 0 0 0 0 0 0
	38		• •	0	0	0		•					Twitter Topic 35 0 0 0 0 0
Twitter_topic_	15	00	00	ଅ	000	00	O	9	U U		(2	Online TimeZone 0 3 000 0 000 00 00 00 00 00 00 00 00 0
Twitter_topic_	33	Ð		Ø		e			C				Twitter topic 13 0 0 0 0 0
Twitter_topic_	30 44				00	0		0		ବ୍ୟ	B		Twitter topic 30 C O O O O O O O O O O O O O O O
Twitter_topic_2	24		•	•	e e	e,	®_6	0		୭୦			Twitter topic 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Twitter_topic_	29		8	e e	00		Ð				8 8		Instagram topic 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Unline_TimeZone_21_2 Twitter_topic_3	24 (U) 34		୦୧	ଅ	00	00			8	<u>ଅ</u>	କ	0.0	Online_TimeZone_21_24 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
Endomondo_topic Endomondo_topic	7	Ð	~ (Ð			C		00		ବଦତ	00	Endomondo topic 0 Endomondo topic 7 Ø Ø Ø Ø Ø Ø
Mobility_center_distan	19 ce	œ ·	C C	G	5			B		ବ୍ୟ	O		Twitter topic 19 Mobility center distance
Endomondo_topic	6		00		<u>B</u> B	U U	6 6					0	Instagram_topic_3
Physical gend	_4 ler	6	-		0		B	e D		0	Ø	Ð	Foursquare topic_4 © @@ @ @ @ @
Mobility_number_of_a	101	୦୦	G				•	9 00	0 0	60	G	00	Online number Of Tweets O O O O O O O O O O
Endomondo_topic	4 77	G								**			Mobility radius
Instagram_topic_2	2				e	0	٢			କୁହ			Twitter Topic 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Twitter_topic ?	22	60	6 9	0	,					0	0	<u> </u>	Foursquare topic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Online_TimeZone_15_*	18 O	0		0	ð 🔊	۲				N B		D	Instagram topic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Twitter_topic_4	41	G	CO	•		B /B				9 0	a a	^	Twitter topic 11 C C C C C C C C C C C C C C C C C C
Twitter_topic_	40	U		9		90			00	0	00	90	Endomondō topic 3 0 0 0 0 0 0 0 0 0 0
Twitter_topic_: Twitter_topic_:	39		(D)		- O O O	AB		U		<u>କ</u> ୍ଷ୍ୟୁ ଅନ୍ୟ	m m		Twitter topic 36 0 00 0 00 00 0 0 0
Unline_IImeZone_18_2 Twitter_topic	5	2	ଜନନ		E E	00	O	9 0	U	6 6	ଇଇ		

Main takeaways

Multi-Source Data Describes Users From Multiple Perspectives Learning From Multi-Source Data Allows For Achieving Significant Individual User Profiling Performance Improvement

Join Learning From Social Media Data And Sensor Data Helps To Improve Wellness Profiling Performance Considering Inter-Source Relationship is Useful For Group User Profiling Qualitative Research On Multi-Source Data Relations is Promising

List of Involved publications

Buraya, K., Farseev, A., Filchenkov, A., & Chua, T. S. (2017 February). Towards User Personality Profiling from Multiple Social Networks. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI.

Nie, L., Zhang, L., Wang, M., Hong, R., Farseev, A., & Chua, T. S. (2017). Learning user attributes via mobile social multimedia analytics. ACM Transactions on Intelligent Systems and Technology (TIST), 8(3), 36.

Farseev, A., Nie, L., Akbari, M., & Chua, T. S. (2015, June). Harvesting multiple sources for user profile learning: a big data study. In Proceedings of the 5th ACM Conference on Multimedia Retrieval (pp. 235-242). ACM.

Farseev, A., Kotkov, D., Semenov, A., Veijalainen, J., & Chua, T. S. (2015, June). Crosssocial network collaborative recommendation. In Proceedings of the 7th ACM Conference on Web Science (p. 38-39). ACM.

Farseev, A., Akbari, M., Samborskii, I., & Chua, T. S. (2016). 360° user profiling: past, future, and applications. by Aleksandr Farseev, Mohammad Akbari, Ivan Samborskii and Tat-Seng Chua with Martin Vesely as coordinator. ACM SIGWEB Newsletter, (Summer), 4.

Farseev, A., Samborskii, I., & Chua, T. S. (2016, October). **bBridge: A Big Data Platform for Social Multimedia Analytics.** In Proceedings of the 25th ACM Conference on Multimedia (pp. 759-761). ACM.

Farseev, A., & Chua, T. S. (2017 February). **TweetFit: Fusing Multiple Social Media** and Sensor Data for Wellness Profile Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (pp. 87-93). AAAI.

Farseev, A., & Chua, T. S. (2017). Tweet can be Fit: Integrating Data from Wearable Sensors and Multiple Social Networks for Wellness Profile Learning. ACM Transactions on Information Systems (TOIS).

Farseev, A., Samborskii, I., Filchenkov, A., & Chua, T. S. (2017 August). Cross-Domain Recommendation via Clustering on Multi-Layer Graphs. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.

NUS-MSS

NUS-MSS – the largest available multi-source cross-region dataset.

135

Includes:

- Foursquare as a location data source;
- Twitter as a textual data source;
- Instagram as a visual data source;
- Facebook as a demographicsrelated ground truth source.

nusmultisource.azurewebsites.net

City	#users	#tweets	#check-ins	#images
Singapore	7,023	11,732,489	366,268	263,530
London	5,503	2,973,162	127,276	65,088
New-York	7,957	5,263,630	304,493	230,752

Ground Truth: Age, Education, Employment, Demography, Location, Relationship Status.

NUS-SENSE

NUS-SENSE: The largest available multi-lingual dataset with personality ground-truth and Twitter IDs.

136

nussense.azurewebsites.net

Includes:

- Foursquare as a location data source;
- Twitter as a textual data source;
- Instagram as a visual data source;
- Endomondo as a sensor data source;

#users #tweets #check-ins #images #workouts 5,375 1,676,310 19,743 48,137 140,926

Ground Truth: BMI, BMI Trend, Exercise Type, Gender, Age

NUS-PERSONALITY

NUS-PERSONALITY:: The largest available multi-lingual dataset with personality ground-truth and Twitter IDs.

Includes:

- Foursquare as a location data source;
- Twitter as a textual data source;
- Instagram as a visual data source;

farseev@gmail.com

#users	#tweets	#check-ins	#images
18,164	22,255,445	420,603	4,465,565

Ground Truth: MBTI, Gender

NUS-GAMING

NUS-PERSONALITY:: The largest available multi-lingual dataset with personality ground-truth and Twitter IDs.

Includes:

• **Steam** users and their individual attributes

farseev@gmail.com

#users	#friends (avg.)	#favorite games
23,375	63	8

Ground Truth: Game Involvement, Achievements, friends, communication, game selection, etc.

Wellness Events in Microblogs

Wellness Events in Microblogs:: Personal Daily Events Detection

139

Includes:

• Twitter as a textual data source;

farseev@gmail.com

#users	#tweets
1, 987	13, 552

Ground Truth:

Diet (6), Exercise (5), Health (3) events, Diabetes Thank You

Questions?

Backup I: Optimization of Multi-Source Multi-Task Objective

141

Smooth Reformulation of the objective: $f(\mathbf{W}) = \underset{\mathbf{W}\in\mathbf{Z}}{\arg\min} \Psi(\mathbf{X}, \mathbf{W}, \mathbf{Y}) + \mu\Omega(\mathbf{W})$ $\mathbf{w}\in\mathbf{Z}$ $s.t. \ \mathbf{Z} = \left\{\mathbf{W} \mid \|\mathbf{W}\|_{2,1} \leq z\right\},$

Nesterov's Optimization Solution on Each Step, S_i computed from past solutions:

$$\mathbf{W}_{i+1} = \underset{\mathbf{W}}{\operatorname{arg min}} M_{\gamma_i, S_i}(\mathbf{W}),$$

$$M_{\gamma_i,S_i}(\mathbf{W}) = f(\mathbf{S}_i) + \langle \nabla f(\mathbf{S}_i), \mathbf{W} - \mathbf{S}_i \rangle + \frac{\gamma_i}{2} ||\mathbf{W} - \mathbf{S}_i||^2, \quad \mathbf{S}_i = \mathbf{W}_i - \alpha_i (\mathbf{W}_i - \mathbf{W}_{i-1}).$$

Backup II: MTL with Joint Feature Learning -2

Backup III: Wellness Profiling Baselines

Wellness Profiling Baselines

- **aMTFL**₂ [85] the $\ell_{2,1}$ norm regularized multi-task learning with the least squares lost and $\alpha = 0.5$.
- **iMSF** [160] the sparse $\ell_{2,1}$ norm regularized multi-source multi-task learning, with $\alpha = 0.4$;
- MSESHC weighted ensemble proposed in [47]. The modality weights s were learned by Stochastic Hill Climbing (SHC): s : {0.75, 0.2, 0.25, 0.45, 0.2, 0.3, 0.45, 0.2}; for venue categories, image concepts, behavioral text, LDA 50 text, sport categories, sensors freq. bins, workout statistics, and mobility features, respectively.
- **TweetFit** [44] multi-source multi-task learning framework "TweetFit" (equivalent to **M²WP** framework, trained without inter-category relatedness regularization (Equation 4.1)).

- [44] A. Farseev and T.-S. Chua. Tweetfit: Fusing multiple social media and sensor data for wellness profile learning. In *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence*. AAAI, 2017.
- [47] A. Farseev, L. Nie, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a big data study. In *Proceedings of the ACM International Conference* on Multimedia Retrieval. ACM, 2015.
- [85] J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient l 2, 1-norm minimization. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2009.
- [160] L. Yuan, Y. Wang, P. M. Thompson, V. A. Narayan, and J. Ye. Multi-source learning for joint analysis of incomplete multi-modality neuroimaging data. In *Proceedings of the* 18th International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2012.

Backup IV: Detected User Communities

144

Namo	Bag of	f Words for diffe	erent modalities				
	Text	Visual	Location				
Gadgets	device,	mouse, digital	electronics store, tech				
832	launcher,	clock, hard	startup, technology				
users	android	disc	building				
Arts	painting,	obelisk, paint-	arts & crafts store,				
538	landscape,	brush, pencil	arts & entertainment,				
users	reflection	box	museum				
Food	dining, cof-	pineapple, mi-	italian restaurant,				
446	fee, cook-	crowave, fry-	pizzeria, macanese				
users	ing	ing pan	restaurant				
Backup V: Recommendation Evaluation Metrics

$$AP@p = \frac{1}{\sum_{i=1}^{p} r_i} \sum_{i=1}^{p} r_i \left(\frac{\sum_{j=1}^{i} r_j}{i}\right), r_i = \begin{cases} 1, & \text{item } i \text{ is relevant} \\ 0, & \text{otherwise.} \end{cases}$$

Normalized Discounted Cumulative Gain

$$NDCG@p = \frac{DCG@p}{IDCG@p}, DCG@p = \sum_{i=1}^{p} \frac{2^{rel_i}}{\log_2(i+1)}, rel_i = \frac{Cat_i}{N_{Cat}}$$